Electronic and magnetic properties of hexagonal ZnSeS solid solutions modified by Cr impurity and the anion concentration

Authors

  • S.V. Syrotyuk Lviv Polytechnic National University, Lviv, Ukraine
  • M.K. Hussain Department of Electrical Power Techniques Engineering, AL-Hussain University College, Kerbala, Iraq
  • R.A. Nakonechnyi Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.2.420-425

Keywords:

ZnSeS Solid Solutions, 3d Impurity, Electronic Energy Bands, Magnetic Moment

Abstract

The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell containing 64 atoms. The electronic properties of the materials based on the two supercells, namely Zn31Cr1Se8S24 and Zn31Cr1Se24S8, were calculated, where Cr replaces the Zn atom. The calculation results reveal that the both materials are semiconductors for the spin down electronic states. For the opposite spin momentum of electrons both materials show the matallic states. For both materials, a significant effect of the substitutional Cr impurity on their electronic and magnetic properties has been established. Both materials investigated here are semimetals, so they are promising materials for spin electronics.

References

M.A. Avil´es, F.J. Gotor, Tuning the excitation wavelength of luminescent Mn2+-doped ZnSxSe1-x obtained by mechanically induced self-sustaining reaction, Optical Materials 117, 111121 (2021); https://doi.org/10.1016/j.optmat.2021.111121.

T. Homann, U. Hotje, M. Binnewies, A. Börger, K.D. Becker, T. Bredow, Composition-dependent band gap in ZnSxSe1–x: a combined experimental and theoretical Study, Solid State Sci. 8, 44 (2006); https://doi.org/10.1016/j.solidstatesciences.2005.08.015.

M. Wang, G.T. Fei, Y.G. Zhang, M.G. Kong, L.D. Zhang, Tunable and predetermined bandgap emissions in alloyed ZnSxSe1–x nanowires, Adv. Mater. 19, 4491 (2007); https://doi.org/10.1002/adma.200602919.

H.X. Chuo, T.Y. Wang, W.G. Zhang, Optical properties of ZnSxSe1-x alloy nanostructures and their photodetectors, J. Alloys Compd. 606, 231 (2014); https://doi.org/10.1016/j.jallcom.2014.04.004.

D. Wu, Y. Chang, Z. Lou, T. Xu, J. Xu, Z. Shi, Y. Tian, X. Li, Controllable synthesis of ternary ZnSxSe1-x nanowires with tunable band-gaps for optoelectronic applications, J. Alloys Compd. 708, 623 (2017); https://doi.org/10.1016/j.jallcom.2017.03.012.

O.P. Malyk, S.V. Syrotyuk, Heavy hole scattering on intrinsic acceptor defects in cadmium telluride: calculation from the first principles, Phys. Chem. Solid State, 23(1), 89 (2022); https://doi.org/10.15330/pcss.23.1.89-95.

H.A. Ilchuk, L.I. Nykyruy, A.I. Kashuba, I.V. Semkiv, M.V. Solovyov, B.P. Naidych, V.M. Kordan, L.R. Deva, M.S. Karkulovska, R.Y. Petrus, Electron, phonon, optical and thermodynamic properties of CdTe crystal calculated by DFT, Phys. Chem. Solid State, 23(2), 261 (2022); https://doi.org/10.15330/pcss.23.2.261-269.

A.I. Kashuba, B. Andriyevsky, I.V. Semkiv, H.A. Ilchuk, R.Y. Petrus, Ya.M. Storozhuk, First-principle calculations of band energy structure of CdSe0.5S0.5 solid state solution thin films, Phys. Chem. Solid State, 23, 52 (2022); https://doi.org/10.15330/pcss.23.1.52-56.

Yu-J. Zhao, P. Mahadevan, A. Zunger, Practical rules for orbital-controlled ferromagnetism of 3d impurities in semiconductors, J. Appl. Phys.98, 113901 (2005); https://doi.org/10.1063/1.2128470.

Y. Wei, Ch. Liu, E. Ma, T. Wang, W. Jie, Optical properties of mid-infrared Cr2+:ZnSe single crystals grown by chemical vapor transporting with NH4Cl, Opt. Optical Materials Express, 11, 664 (2021); https://doi.org/10.1364/OME.416315.

Y. C. Wei, C. Y. Liu, E. Ma, Z. Y. Lu, F. Y. Wang, Y. C. Song, Q. H. Sun, W. Q. Jie, T. Wang, The optical spectra characteristic of Cr2+:ZnSe polycrystalline synthesized by direction of Zn-Cr alloy and element Se, Ceram. Int. 46, 21136 (2020); https://doi.org/10.1016/j.ceramint.2020.05.190.

S.V. Syrotyuk, O.P. Malyk, Effect of Strong Correlations on the Spin-polarized Electronic Energy Bands of the CdMnTe Solid Solution, J. Nano- Electron. Phys., 11, 01009 (2019); https://doi.org/10.21272/jnep.11(1).01009).

S.V. Syrotyuk, Moaid K. Hussain, The Effect of Cr Impurity and Zn Vacancy on Electronic and Magnetic Properties of ZnSe Crystal, Phys. Chem. Solid State: 22, 529 (2021).

S.V. Syrotyuk, M.K. Hussain, Influence of Pressure on the Electronic and Magnetic Properties of the ZnSeTe Solid Solution Doped with Fe Atoms, J. Nano- Electron. Phys., 15, 05002 (2023); https://doi.org/10.21272/jnep.15(5).05002.

S.V. Syrotyuk, A.Y. Nakonechnyi, Yu.V. Klysko, H.I. Vlakh-Vyhrynovska, Z.E. Veres, Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure, Phys. Chem. Solid State, 25, 65 (2024); https://doi.org/10.15330/pcss.25.1.65-72.

[S.V. Syrotyuk, A.Y. Nakonechnyi, Yu.V. Klysko, M.V. Stepanyak, V.M. Myshchyshyn, Electronic and Magnetic Properties of the Wurtzite Solid Solution Mn:ZnSeS, J. Nano- Electron. Phys., 16, 05033 (2024); https://doi.org/10.21272/jnep.16(5).05033.

X. Gonze et al., Recent developments in the ABINIT software package, Comput. Phys. Comm. 205, 106 (2016); https://doi.org/10.1016/j.cpc.2016.04.003.

P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letters 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-orrelation functional, J. Chem. Phys. 110, 5029 (1999); https://doi.org/10.1063/1.478401.

Downloads

Published

2025-06-28

How to Cite

Syrotyuk, S., Hussain, M., & Nakonechnyi, R. (2025). Electronic and magnetic properties of hexagonal ZnSeS solid solutions modified by Cr impurity and the anion concentration. Physics and Chemistry of Solid State, 26(2), 420–425. https://doi.org/10.15330/pcss.26.2.420-425

Issue

Section

Scientific articles (Physics)