Application of thermoelectric cooling and heating to control the temperature of irrigation fluid in ophthalmic surgery
DOI:
https://doi.org/10.15330/pcss.26.1.151-157Keywords:
thermoelectric cooler, temperature conditions, ophthalmic surgery, irrigation fluidAbstract
The paper considers the possibilities of using thermoelectric cooling and heating irrigation fluid during ophthalmic surgery. A comparative analysis of the use of compression, cryogenic and thermoelectric devices in the required temperature range of irrigation solutions at an ambient temperature of about 20°C is carried out. The advantages of using devices based on thermoelectric cooling (heating) in medical practice are shown. The results of the design and study of the parameters of a thermoelectric device to ensure the optimal temperature of the irrigation fluid during ophthalmic operations are presented.
References
Y. Iguchi, T. Asami, S. Ueno, H. Ushida, R. Maruko, K. Oiwa, H. Terasaki, Changes in vitreous temperature during intravitreal surgery. Invest. Ophthalmol. Vis. Sci., 55, 2344 (2014); https://doi.org/10.1167/iovs.13-13065.
L. Anatychuk, N. Pasyechnikova, V. Naumenko, R. Kobylianskyi, Nazaretyan R., Zadorozhnyy O. Prospects of temperature management in vitreoretinal surgery. Ther. Hypothermia Temp. Manag., 11(2), 117 (2021); https://doi.org/10.1089/ther.2020.0019.
O. Zadorozhnyy, A. Korol, V. Naumenko, N. Pasyechnikova, L.Butenko, Heat exchange in the human eye: a review. Journal of Ophthalmology (Ukraine), 6, 50 (2022); http://doi.org/10.31288/oftalmolzh202265058.
L. Anatychuk, O. Zadorozhnyy, V. Naumenko, E. Maltsev, R. Kobylianskyi, R. Nazaretyan, M. Umanets, T. Kustryn, I. Nasinnyk, A. Korol, N. Pasyechnikova, Vitreoretinal surgery with temperature management: A preliminary study in rabbits, Ther. Hypothermia Temp. Manag., 13(3), 126 (2023).; http://doi.org/10.1089/ther.2022.0044.
A. Ramprasad, F. Qureshi, W. White The risk of thermal dermal damage in cataract phacoemulsification. Invest. Ophthalmol. Vis. Sci., 63(7), 1704 (2022).
D. Upasani, S. Daigavane, Phacoemulsification techniques and their effects on corneal endothelial cells and visual acuity: A review of "Direct-Chop" and "Stop-and-Chop" approaches under topical anesthesia, Cureus, 16(8), e66587 (2024); https://doi.org/10.7759/cureus.66587.
H. Saad, M. Aladawy, Temperature management in cardiac surgery, Glob. Cardiol. Sci. Pract., 1, 44 (2013); https://doi.org/10.5339/gcsp.2013.7.
M.E. Nunnally, R. Jaeschke, G.J. Bellingan, J. Lacroix, B. Mourvillier, G.M. Rodriguez-Vega, S. Rubertsson, T. Vassilakopoulos, C. Weinert, S. Zanotti-Cavazzoni, T.G. Buchman, Targeted temperature management in critical care: a report and recommendations from five professional societies, Crit. Care Med., 39(5), 1113 (2011); https://doi.org/10.1097/CCM.0b013e318206bab2.
R. Gocoł, D. Hudziak, J. Bis, K. Mendrala, Ł. Morkisz, P. Podsiadło, S. Kosiński, J. Piątek, T. Darocha, The role of deep hypothermia in cardiac surgery. Int. J. Environ. Res. Public Health, 18(13), 7061 (2021); https://doi.org/10.3390/ijerph18137061.
V.M. Arseniev, V.M. Kozin Kriohenna tekhnika: osnovy teorii i rozrakhunku tsykliv kriohennykh ustanovok,[Cryogenic technology: basics of theory and calculation of cycles of cryogenic installations] Sumy State University, Sumy, 2021 [In Ukrainian].
O.S. Zadorozhnyy, N.V. Savin, A.S. Buiko, Improving the technique for controlled cryogenic destruction of conjunctival tumors located in the projection of the ciliary body onto the sclera: A preliminary report. Journal of Ophthalmology (Ukraine), 5, 60 (2018); https://doi.org/10.31288/oftalmolzh201856065.
L.I. Anatychuk, A.V. Prybyla, Comparative analysis of thermoelectric and compression heat pumps for individual air-conditioners. J. Thermoelectricity, 2, 33 (2016).
L.I. Anatychuk, Thermoelectricity. Vol.1. Physics of thermoelectricity (Institute of Thermoelectricity, Kyiv, Chernivtsi, 1998).
L.I. Anatychuk, Thermoelectricity. Vol.2. Thermoelectric power converters. (Institute of Thermoelectricity, Kyiv, Chernivtsi, 2003.)
M.R. Romano, L. Barachetti, M. Ferrara, A. Mauro, L. Crepaldi, V. Bronzo, G. Franzo, G. Ravasio, C. Giudice. Temperature control during pars plana vitrectomy. Graefes Arch. Clin. Exp. Ophthalmol., (2024); https://doi.org/10.1007/s00417-024-06631-6.
R. Nazaretian, O. Zadorozhnyy, M. Umanets, V. Naumenko, N. Pasyechnikova, Effect of irrigation solution temperature on the duration of intraocular bleeding during vitrectomy (experimental study), Journal of Ophthalmology (Ukraine), 2, 60 (2020); https://doi.org/10.31288/oftalmolzh202026064.
COMSOL Multiphysics User’s Guide. (COMSOL AB, Stockholm, 2010).
A. Mauro, N. Massarotti, M. Salahudeen, F. Cuomo, C. ostagliola, L. Ambrosone, M.R. Romano, Design of a novel heating device for infusion fluids in vitrectomy. Appl. Therm. Eng., 128, 625 (2018); https://doi.org/10.1016/j.applthermaleng.2017.08. 027.
J. Rinkoff, R. Machemer, T. Hida, D. Chandler, Temperature-dependent light damage to the retina. Am. J. Ophthalmol., 102(4), 452 (1986); https://doi.org/10.1016/0002-9394(86)90073-5.
K. Tamai, E. Toumoto, A. Majima, Local hypothermia protects the retina from ischaemic injury in vitrectomy, Br. J. Ophthalmol., 81(9), 789 (1997); https://doi.org/10.1136/bjo.81.9.789.
N.M. Jabbour, C.L. Schepens, S.M. Buzney, Local ocular hypothermia in experimental intraocular surgery. Ophthalmology, 95(12), 1687 (1998); https://doi.org/10.1016/s0161-6420(88)32956-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R.R. Kobylianskyi, V.V. Lysko, N.V. Pasyechnikova, М.М. Umanets, О.S. Zadorozhnyy, Yu.Yu. Rozver, А.О. Babich

This work is licensed under a Creative Commons Attribution 3.0 Unported License.