Influence of Neodymium Doping on the Thermomagnetic Response and Colloidal Behavior of Copper Ferrite Nanoparticles

Authors

  • M. Mokliak Department of Applied Physics and Materials Science, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • L. Kaykan Laboratory for Physics of Magnetic Films, G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, Kyiv, Ukraine
  • J. Mazurenko Laboratory for Physics of Magnetic Films, G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, Kyiv, Ukraine
  • M. Moiseienko Department of Medical Informatics, Medical and Biological Physics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • M. Kuzyshyn Department of Medical Informatics, Medical and Biological Physics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • I. Dovbnia Department of Medical Informatics, Medical and Biological Physics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • N. Ilnitsky Department of Medical Informatics, Medical and Biological Physics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • S. Yuryev Lviv Polytechnic National University, Lviv, Ukraine
  • V. Mokliak Laboratory for Physics of Magnetic Films, G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, Kyiv, Ukraine; Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.3.564-577

Keywords:

Copper Ferrite, Neodymium substitution, Magnetic nanoparticles, Magnetic hyperthermia, Energy-efficient therapy, Box Lucas Method, Newton Cooling Approach

Abstract

In this work, CuNdxFe2-xO4 (x = 0.00 - 0.11) nanoparticles were synthesized via a sol-gel autocombustion method and systematically investigated to evaluate the impact of neodymium substitution on their structural, magnetic, and heating performance for magnetic hyperthermia applications. X-ray diffraction confirmed the formation of spinel structures across all compositions. Magnetic characterization revealed a non-monotonic trend in saturation magnetization (Ms), reaching a maximum value of 62.11 emu/g at x = 0.05, while coercivity (Hc) varied between 236 and 273 Oe, reflecting the influence of Nd3+ on magnetic anisotropy. The magnetocrystalline anisotropy constant (K) was evaluated using both coercivity-based and high-field approaches, confirming enhanced anisotropy at moderate Nd substitution. Corresponding Néel relaxation times (τN) ranged from ~5 to 22 ns, supporting efficient magnetic heating for selected compositions.

Zeta potential measurements demonstrated enhanced colloidal stability with moderate Nd substitution, with values exceeding +30 mV, suggesting favorable dispersion conditions for biomedical use. Magnetic hyperthermia performance was assessed under an alternating magnetic field (23.8 kA/m, 357 kHz) using both Box–Lucas and Newton Cooling models. The highest specific absorption rate (SAR) values, were observed for x = 0.03, 0.05, and 0.11. These findings underscore the importance of optimizing rare-earth substitution to modulate surface charge, magnetic anisotropy, and relaxation behavior.

References

W. Jiao, L. Dai, B. Yan, Y. Lyu, H. Fan, X. Liu, Heating up the immune battle: Magnetic hyperthermia against cance, Fundamental Research, (2024); https://doi.org/10.1016/j.fmre.2024.08.006.

A. Chauhan, A. Saini, D. Sharma, The evolution of integrated magnetic hyperthermia and chemodynamic therapy for combating cancer: a comprehensive viewpoint, Nanoscale Advances, (2025); https://doi.org/10.1039/d4na01004c.

Y. Zhang, C. Paraskeva, Q. Chen, A. Maisuradze, S. R. Ansari, T. Sarkar, V. Koliaraki, A. Teleki, Flame-made nanoparticles for magnetic hyperthermia and MRI in colorectal cancer theranostics, Nanoscale Advances, (2025); https://doi.org/10.1039/d5na00603a.

H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chemical Society Reviews, 50(20), 11614 (2021); https://doi.org/10.1039/d1cs00427a.

D. Egea-Benavente, J. G. Ovejero, M. del P. Morales, D. F. Barber, Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation, Cancers, 13(18), 4583 (2021); https://doi.org/10.3390/cancers13184583.

A. Salokhe, A. Koli, V. Jadhav, S. Mane-Gavade, A. Supale, R. Dhabbe, X.-Y. Yu, S. Sabale, , Magneto-structural and induction heating properties of MFe2O4 (M = Co, Mn, Zn) MNPs for magnetic particle hyperthermia application, SN Applied Sciences, 2(12), (2020); https://doi.org/10.1007/s42452-020-03865-x.

O.M. Lemine, S. Algessair, N. Madkhali, B. Al-Najar, K. El-Boubbou, Assessing the heat generation and self-heating mechanism of superparamagnetic Fe3O4 nanoparticles for magnetic hyperthermia application: the effects of concentration, frequency, and magnetic field, Nanomaterials, 13(3), 453 (2023); https://doi.org/10.3390/nano13030453.

Q.L. Vuong, P. Gillis, A. Roch, Y. Gossuin, , Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review, WIREs Nanomedicine and Nanobiotechnology, 9(6), (2017); https://doi.org/10.1002/wnan.1468.

C.E. Botez, J. Knoop, Non-Debye behavior of the Néel and Brown relaxation in interacting magnetic nanoparticle ensembles, Materials, 17(16), 3957 (2024); https://doi.org/10.3390/ma17163957.

Z. Ma, J. Mohapatra, K. Wei, J. P. Liu, S. Sun, Magnetic nanoparticles: synthesis, anisotropy, and applications, Chemical Reviews, 123(7), 3904 (2021); https://doi.org/10.1021/acs.chemrev.1c00860.

J. Mazurenko, L. Kaykan, J. M. Michalik, M. Sikora, E. Szostak, O. Vyshnevskyi, K. Bandura, L. Turovska, Enhanced synthesis of copper ferrite magnetic nanoparticles via polymer-assisted sol-gel autocombustion method for magnetic hyperthermia applications, Journal of Nano Research, 84, 95 (2024); https://doi.org/10.4028/p-jbv1le.

D.J. Pochapski, C. Carvalho dos Santos, G. W. Leite, S. H. Pulcinelli, C. V. Santilli, Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: effects of experimental conditions and electrokinetic models on the interpretation of results, Langmuir, 37(45), 13379 (2021); https://doi.org/10.1021/acs.langmuir.1c02056.

R.R. Retamal Marín, F. Babick, L. Hillemann, Aspects, Zeta potential measurements for non-spherical colloidal particles – practical issues of characterisation of interfacial properties of nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering, 532, 516 (2017); https://doi.org/10.1016/j.colsurfa.2017.04.010.

J. Tompkins, D. Huitink, , Induction heating response of iron oxide nanoparticles in varyingly viscous mediums with prediction of Brownian heating contribution, Nanoscale and Microscale Thermophysical Engineering, 24(3–4), 123 (2020); https://doi.org/10.1080/15567265.2020.1806968.

J. Mazurenko, L. Kaykan, A. Zywczak, V. Kotsyubynsky, Kh. Bandura, M. Moiseienko, A. Vytvytskyi, Study of Li-Al ferrites by nuclear magnetic resonance, UV-spectroscopy, and Mössbauer spectroscopy, Journal of Nano- and Electronic Physics, 15(2), 02020 (2023); https://doi.org/10.21272/jnep.15(2).02020.

L.S. Kaykan, J.S. Mazurenko, N.V. Ostapovych, A.K. Sijo, N.Ya. ’Ivanichok, Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method, Journal of Nano- and Electronic Physics 12(4), 04008 (2020); https://doi.org/10.21272/jnep.12(4).04008.

B.K. Ostafijchuk, V.S. Bushkova, V.V. Moklyak, R.V. lnitsky, Synthesis and magnetic microstructure of nanoparticles of zinc-substituted magnesium ferrites, Ukrainian Journal of Physics, 60(12), 1234 (2015); https://doi.org/10.15407/ujpe60.12.1234.

İ. Şabikoğlu, L. Paralı, O. Malina, P. Novak, J. Kaslik, J. Tucek, J. Pechousek, J. Navarik, O. Schneeweiss, The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite, Progress in Natural Science: Materials International, 25(3), 215 (2015); https://doi.org/10.1016/j.pnsc.2015.06.002.

S.R. Bhongale, H.R. Ingawale, T. J. Shinde, P.N. Vasambekar, Effect of Nd3+ substitution on structural and magnetic properties of Mg–Cd ferrites synthesized by microwave sintering technique Journal of Rare Earths, 36(4), 390 (2018); https://doi.org/10.1016/j.jre.2017.11.003.

V.O. Kotsyubynsky, A.B. Grubiak, V.V. Moklyak, V.M. Pylypiv, R.P. Lisovsky, Structural, morphological, and magnetic properties of the mesoporous maghemite synthesized by a citrate method, Metallofizika i Noveishie Tekhnologii, 36(11), 1497 (2016); https://doi.org/10.15407/mfint.36.11.1497.

M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Demir Korkmaz, S. Guner, S. Akhtar, S. E. Shirsath, A. Baykal, I. Ercan, Effect of Nd–Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites, Journal of Materials Research and Technology, 9(5), 11278 (2020); https://doi.org/10.1016/j.jmrt.2020.08.027.

R.A. Reddy, K.R. Rao, B. Rajesh Babu, G. K. Kumar, C. Rajesh, A. Chatterjee, N. K. Jyothi, Structural, electrical and magnetic properties of cobalt ferrite with Nd3+ doping, Rare Metals, 41(1), 240 (2019); https://doi.org/10.1007/s12598-019-01285-4.

C.N. Chinnasamy, M. Senoue, B. Jeyadevan, O. Perales-Perez, K. Shinoda, K. Tohji, , Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio, Journal of Colloid and Interface Science, 263(1), 80 (2003); https://doi.org/10.1016/s0021-9797(03)00258-3.

S. Levi, R. T. Merrill, Properties of single‐domain, pseudo‐single‐domain, and multidomain magnetite, Journal of Geophysical Research: Solid Earth, 83(B1), 309 (1978); https://doi.org/10.1029/jb083ib01p00309.

S. Kumari, M. K. Manglam, A. Shukla, L. Kumar, P. Seal, J. P. Borah, M. Kar, Optimization of magnetic properties and hyperthermia study on soft magnetic nickel ferrite fiber, Physica B: Condensed Matter, 621, 413280 (2021); https://doi.org/10.1016/j.physb.2021.413280.

E. Stoner, E. P. Wohlfarth, Mathematical and Physical Sciences, A mechanism of magnetic hysteresis in heterogeneous alloys, Philosophical Transactions of the Royal Society of London. Series A, 240(826), 599 (1948); https://doi.org/10.1098/rsta.1948.0007.

M.K. Manglam, S. Kumari, L. K. Pradhan, S. Kumar, M. Kar, Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite, Physica B: Condensed Matter, 588, 412200 (2020); https://doi.org/10.1016/j.physb.2020.412200.

N. Zufelato, V. R. R. Aquino, N. Shrivastava, S. Mendanha, R. Miotto, A. F. Bakuzis, Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation, ACS Applied Nano Materials, 5(5), 7521 (2022); https://doi.org/10.1021/acsanm.2c01536.

K. Kodama, S. Hamada, K. Nashimoto, K. Aoki, K. Ohara, K. Nakazawa, Y. Ichiyanagi, Nanoarchitectonics of PEG-coated Ni-Zn ferrite nanoparticles and mechanical analysis of heat generation by magnetic relaxation, Journal of Inorganic and Organometallic Polymers and Materials, 32(9), 3292 (2022); https://doi.org/10.1007/s10904-022-02372-3.

H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chemical Society Reviews, 50(20), 11614 (2021); https://doi.org/10.1039/d1cs00427a.

Q. Zhang, R. Zhou, G. Huang, Y. Zhang, X. Sui, , Zeta potential, pp. Methods and Protocols in Food Science 287 (2024); https://doi.org/10.1007/978-1-0716-4272-6_22.

C. N. Lunardi, A. J. Gomes, F. S. Rocha, J. De Tommaso, G. S. Patience, The Canadian Journal of Chemical Engineering, Experimental methods in chemical engineering: zeta potential 99(3), 627 (2021); https://doi.org/10.1002/cjce.23914.

A. Serrano-Lotina, R. Portela, P. Baeza, V. Alcolea-Rodriguez, M. Villarroel, P. Ávila, Zeta potential as a tool for functional materials development, Catalysis Today, 423, 113862 (2023); https://doi.org/10.1016/j.cattod.2022.08.004.

J. Mazurenko, L. Kaykan, V. Moklyak, M. Moklyak, M. Moiseienko, N. Ostapovych, M. Petryshyn, Inductive heating behavior of copper ferrite magnetic nanoparticles, Physics and Chemistry of Solid State, 26(2), 312 (2025); https://doi.org/10.15330/pcss.26.2.312-321.

D. Serantes, D. Baldomir, Nanoparticle size threshold for magnetic agglomeration and associated hyperthermia performance, Nanomaterials,11(11), 2786 (2021); https://doi.org/10.3390/nano11112786.

A. Cabral-Prieto, I. García-Sosa, E. Reguera, N. N. Entzana, H. Tadeo-Huerta, R. Ramírez-Suárez, Estimation of the specific absorption rate in magnetic hyperthermia studies via the modified Box–Lucas and extended-CSM methods, AIP Advances, 15(4), (2025); https://doi.org/10.1063/5.0254802.

E.R.L. Siqueira, W O. Pinheiro, V.R. R. Aquino, B. C.P. Coelho, A. F. Bakuzis, R. B. Azevedo, M. H. Sousa, P. C. Morais, Engineering gold shelled nanomagnets for pre-setting the operating temperature for magnetic hyperthermia, Nanomaterials, 12(16), 2760 (2022); https://doi.org/10.3390/nano12162760.

Y. Yan, Y. Li, J. You, K. Shen, W. Chen, L. Li, Morphology-dependent magnetic hyperthermia characteristics of Fe3O4 nanoparticles, Materials Chemistry and Physics, 329, 130045 (2025); https://doi.org/10.1016/j.matchemphys.2024.130045.

N. Rmili, K. Riahi, R. M’nassri, B. Ouertani, W. Cheikhrouhou-Koubaa, E. K. Hlil, Magnetocaloric and induction heating characteristics of La0.71Sr0.29Mn0.95Fe0.05O3 nanoparticles, Journal of Sol-Gel Science and Technology, (2024); https://doi.org/10.1007/s10971-024-06361-5.

Downloads

Published

2025-09-17

How to Cite

Mokliak, M., Kaykan, L., Mazurenko, J., Moiseienko, M., Kuzyshyn, M., Dovbnia, I., … Mokliak, V. (2025). Influence of Neodymium Doping on the Thermomagnetic Response and Colloidal Behavior of Copper Ferrite Nanoparticles. Physics and Chemistry of Solid State, 26(3), 564–577. https://doi.org/10.15330/pcss.26.3.564-577

Issue

Section

Scientific articles (Physics)