Influence of Neodymium Doping on the Thermomagnetic Response and Colloidal Behavior of Copper Ferrite Nanoparticles
DOI:
https://doi.org/10.15330/pcss.26.3.564-577Keywords:
Copper Ferrite, Neodymium substitution, Magnetic nanoparticles, Magnetic hyperthermia, Energy-efficient therapy, Box Lucas Method, Newton Cooling ApproachAbstract
In this work, CuNdxFe2-xO4 (x = 0.00 - 0.11) nanoparticles were synthesized via a sol-gel autocombustion method and systematically investigated to evaluate the impact of neodymium substitution on their structural, magnetic, and heating performance for magnetic hyperthermia applications. X-ray diffraction confirmed the formation of spinel structures across all compositions. Magnetic characterization revealed a non-monotonic trend in saturation magnetization (Ms), reaching a maximum value of 62.11 emu/g at x = 0.05, while coercivity (Hc) varied between 236 and 273 Oe, reflecting the influence of Nd3+ on magnetic anisotropy. The magnetocrystalline anisotropy constant (K) was evaluated using both coercivity-based and high-field approaches, confirming enhanced anisotropy at moderate Nd substitution. Corresponding Néel relaxation times (τN) ranged from ~5 to 22 ns, supporting efficient magnetic heating for selected compositions.
Zeta potential measurements demonstrated enhanced colloidal stability with moderate Nd substitution, with values exceeding +30 mV, suggesting favorable dispersion conditions for biomedical use. Magnetic hyperthermia performance was assessed under an alternating magnetic field (23.8 kA/m, 357 kHz) using both Box–Lucas and Newton Cooling models. The highest specific absorption rate (SAR) values, were observed for x = 0.03, 0.05, and 0.11. These findings underscore the importance of optimizing rare-earth substitution to modulate surface charge, magnetic anisotropy, and relaxation behavior.
References
W. Jiao, L. Dai, B. Yan, Y. Lyu, H. Fan, X. Liu, Heating up the immune battle: Magnetic hyperthermia against cance, Fundamental Research, (2024); https://doi.org/10.1016/j.fmre.2024.08.006.
A. Chauhan, A. Saini, D. Sharma, The evolution of integrated magnetic hyperthermia and chemodynamic therapy for combating cancer: a comprehensive viewpoint, Nanoscale Advances, (2025); https://doi.org/10.1039/d4na01004c.
Y. Zhang, C. Paraskeva, Q. Chen, A. Maisuradze, S. R. Ansari, T. Sarkar, V. Koliaraki, A. Teleki, Flame-made nanoparticles for magnetic hyperthermia and MRI in colorectal cancer theranostics, Nanoscale Advances, (2025); https://doi.org/10.1039/d5na00603a.
H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chemical Society Reviews, 50(20), 11614 (2021); https://doi.org/10.1039/d1cs00427a.
D. Egea-Benavente, J. G. Ovejero, M. del P. Morales, D. F. Barber, Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation, Cancers, 13(18), 4583 (2021); https://doi.org/10.3390/cancers13184583.
A. Salokhe, A. Koli, V. Jadhav, S. Mane-Gavade, A. Supale, R. Dhabbe, X.-Y. Yu, S. Sabale, , Magneto-structural and induction heating properties of MFe2O4 (M = Co, Mn, Zn) MNPs for magnetic particle hyperthermia application, SN Applied Sciences, 2(12), (2020); https://doi.org/10.1007/s42452-020-03865-x.
O.M. Lemine, S. Algessair, N. Madkhali, B. Al-Najar, K. El-Boubbou, Assessing the heat generation and self-heating mechanism of superparamagnetic Fe3O4 nanoparticles for magnetic hyperthermia application: the effects of concentration, frequency, and magnetic field, Nanomaterials, 13(3), 453 (2023); https://doi.org/10.3390/nano13030453.
Q.L. Vuong, P. Gillis, A. Roch, Y. Gossuin, , Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review, WIREs Nanomedicine and Nanobiotechnology, 9(6), (2017); https://doi.org/10.1002/wnan.1468.
C.E. Botez, J. Knoop, Non-Debye behavior of the Néel and Brown relaxation in interacting magnetic nanoparticle ensembles, Materials, 17(16), 3957 (2024); https://doi.org/10.3390/ma17163957.
Z. Ma, J. Mohapatra, K. Wei, J. P. Liu, S. Sun, Magnetic nanoparticles: synthesis, anisotropy, and applications, Chemical Reviews, 123(7), 3904 (2021); https://doi.org/10.1021/acs.chemrev.1c00860.
J. Mazurenko, L. Kaykan, J. M. Michalik, M. Sikora, E. Szostak, O. Vyshnevskyi, K. Bandura, L. Turovska, Enhanced synthesis of copper ferrite magnetic nanoparticles via polymer-assisted sol-gel autocombustion method for magnetic hyperthermia applications, Journal of Nano Research, 84, 95 (2024); https://doi.org/10.4028/p-jbv1le.
D.J. Pochapski, C. Carvalho dos Santos, G. W. Leite, S. H. Pulcinelli, C. V. Santilli, Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: effects of experimental conditions and electrokinetic models on the interpretation of results, Langmuir, 37(45), 13379 (2021); https://doi.org/10.1021/acs.langmuir.1c02056.
R.R. Retamal Marín, F. Babick, L. Hillemann, Aspects, Zeta potential measurements for non-spherical colloidal particles – practical issues of characterisation of interfacial properties of nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering, 532, 516 (2017); https://doi.org/10.1016/j.colsurfa.2017.04.010.
J. Tompkins, D. Huitink, , Induction heating response of iron oxide nanoparticles in varyingly viscous mediums with prediction of Brownian heating contribution, Nanoscale and Microscale Thermophysical Engineering, 24(3–4), 123 (2020); https://doi.org/10.1080/15567265.2020.1806968.
J. Mazurenko, L. Kaykan, A. Zywczak, V. Kotsyubynsky, Kh. Bandura, M. Moiseienko, A. Vytvytskyi, Study of Li-Al ferrites by nuclear magnetic resonance, UV-spectroscopy, and Mössbauer spectroscopy, Journal of Nano- and Electronic Physics, 15(2), 02020 (2023); https://doi.org/10.21272/jnep.15(2).02020.
L.S. Kaykan, J.S. Mazurenko, N.V. Ostapovych, A.K. Sijo, N.Ya. ’Ivanichok, Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method, Journal of Nano- and Electronic Physics 12(4), 04008 (2020); https://doi.org/10.21272/jnep.12(4).04008.
B.K. Ostafijchuk, V.S. Bushkova, V.V. Moklyak, R.V. lnitsky, Synthesis and magnetic microstructure of nanoparticles of zinc-substituted magnesium ferrites, Ukrainian Journal of Physics, 60(12), 1234 (2015); https://doi.org/10.15407/ujpe60.12.1234.
İ. Şabikoğlu, L. Paralı, O. Malina, P. Novak, J. Kaslik, J. Tucek, J. Pechousek, J. Navarik, O. Schneeweiss, The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite, Progress in Natural Science: Materials International, 25(3), 215 (2015); https://doi.org/10.1016/j.pnsc.2015.06.002.
S.R. Bhongale, H.R. Ingawale, T. J. Shinde, P.N. Vasambekar, Effect of Nd3+ substitution on structural and magnetic properties of Mg–Cd ferrites synthesized by microwave sintering technique Journal of Rare Earths, 36(4), 390 (2018); https://doi.org/10.1016/j.jre.2017.11.003.
V.O. Kotsyubynsky, A.B. Grubiak, V.V. Moklyak, V.M. Pylypiv, R.P. Lisovsky, Structural, morphological, and magnetic properties of the mesoporous maghemite synthesized by a citrate method, Metallofizika i Noveishie Tekhnologii, 36(11), 1497 (2016); https://doi.org/10.15407/mfint.36.11.1497.
M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Demir Korkmaz, S. Guner, S. Akhtar, S. E. Shirsath, A. Baykal, I. Ercan, Effect of Nd–Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites, Journal of Materials Research and Technology, 9(5), 11278 (2020); https://doi.org/10.1016/j.jmrt.2020.08.027.
R.A. Reddy, K.R. Rao, B. Rajesh Babu, G. K. Kumar, C. Rajesh, A. Chatterjee, N. K. Jyothi, Structural, electrical and magnetic properties of cobalt ferrite with Nd3+ doping, Rare Metals, 41(1), 240 (2019); https://doi.org/10.1007/s12598-019-01285-4.
C.N. Chinnasamy, M. Senoue, B. Jeyadevan, O. Perales-Perez, K. Shinoda, K. Tohji, , Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio, Journal of Colloid and Interface Science, 263(1), 80 (2003); https://doi.org/10.1016/s0021-9797(03)00258-3.
S. Levi, R. T. Merrill, Properties of single‐domain, pseudo‐single‐domain, and multidomain magnetite, Journal of Geophysical Research: Solid Earth, 83(B1), 309 (1978); https://doi.org/10.1029/jb083ib01p00309.
S. Kumari, M. K. Manglam, A. Shukla, L. Kumar, P. Seal, J. P. Borah, M. Kar, Optimization of magnetic properties and hyperthermia study on soft magnetic nickel ferrite fiber, Physica B: Condensed Matter, 621, 413280 (2021); https://doi.org/10.1016/j.physb.2021.413280.
E. Stoner, E. P. Wohlfarth, Mathematical and Physical Sciences, A mechanism of magnetic hysteresis in heterogeneous alloys, Philosophical Transactions of the Royal Society of London. Series A, 240(826), 599 (1948); https://doi.org/10.1098/rsta.1948.0007.
M.K. Manglam, S. Kumari, L. K. Pradhan, S. Kumar, M. Kar, Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite, Physica B: Condensed Matter, 588, 412200 (2020); https://doi.org/10.1016/j.physb.2020.412200.
N. Zufelato, V. R. R. Aquino, N. Shrivastava, S. Mendanha, R. Miotto, A. F. Bakuzis, Heat generation in magnetic hyperthermia by manganese ferrite-based nanoparticles arises from Néel collective magnetic relaxation, ACS Applied Nano Materials, 5(5), 7521 (2022); https://doi.org/10.1021/acsanm.2c01536.
K. Kodama, S. Hamada, K. Nashimoto, K. Aoki, K. Ohara, K. Nakazawa, Y. Ichiyanagi, Nanoarchitectonics of PEG-coated Ni-Zn ferrite nanoparticles and mechanical analysis of heat generation by magnetic relaxation, Journal of Inorganic and Organometallic Polymers and Materials, 32(9), 3292 (2022); https://doi.org/10.1007/s10904-022-02372-3.
H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chemical Society Reviews, 50(20), 11614 (2021); https://doi.org/10.1039/d1cs00427a.
Q. Zhang, R. Zhou, G. Huang, Y. Zhang, X. Sui, , Zeta potential, pp. Methods and Protocols in Food Science 287 (2024); https://doi.org/10.1007/978-1-0716-4272-6_22.
C. N. Lunardi, A. J. Gomes, F. S. Rocha, J. De Tommaso, G. S. Patience, The Canadian Journal of Chemical Engineering, Experimental methods in chemical engineering: zeta potential 99(3), 627 (2021); https://doi.org/10.1002/cjce.23914.
A. Serrano-Lotina, R. Portela, P. Baeza, V. Alcolea-Rodriguez, M. Villarroel, P. Ávila, Zeta potential as a tool for functional materials development, Catalysis Today, 423, 113862 (2023); https://doi.org/10.1016/j.cattod.2022.08.004.
J. Mazurenko, L. Kaykan, V. Moklyak, M. Moklyak, M. Moiseienko, N. Ostapovych, M. Petryshyn, Inductive heating behavior of copper ferrite magnetic nanoparticles, Physics and Chemistry of Solid State, 26(2), 312 (2025); https://doi.org/10.15330/pcss.26.2.312-321.
D. Serantes, D. Baldomir, Nanoparticle size threshold for magnetic agglomeration and associated hyperthermia performance, Nanomaterials,11(11), 2786 (2021); https://doi.org/10.3390/nano11112786.
A. Cabral-Prieto, I. García-Sosa, E. Reguera, N. N. Entzana, H. Tadeo-Huerta, R. Ramírez-Suárez, Estimation of the specific absorption rate in magnetic hyperthermia studies via the modified Box–Lucas and extended-CSM methods, AIP Advances, 15(4), (2025); https://doi.org/10.1063/5.0254802.
E.R.L. Siqueira, W O. Pinheiro, V.R. R. Aquino, B. C.P. Coelho, A. F. Bakuzis, R. B. Azevedo, M. H. Sousa, P. C. Morais, Engineering gold shelled nanomagnets for pre-setting the operating temperature for magnetic hyperthermia, Nanomaterials, 12(16), 2760 (2022); https://doi.org/10.3390/nano12162760.
Y. Yan, Y. Li, J. You, K. Shen, W. Chen, L. Li, Morphology-dependent magnetic hyperthermia characteristics of Fe3O4 nanoparticles, Materials Chemistry and Physics, 329, 130045 (2025); https://doi.org/10.1016/j.matchemphys.2024.130045.
N. Rmili, K. Riahi, R. M’nassri, B. Ouertani, W. Cheikhrouhou-Koubaa, E. K. Hlil, Magnetocaloric and induction heating characteristics of La0.71Sr0.29Mn0.95Fe0.05O3 nanoparticles, Journal of Sol-Gel Science and Technology, (2024); https://doi.org/10.1007/s10971-024-06361-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Mokliak, L. Kaykan, J. Mazurenko, M. Moiseienko, M. Kuzyshyn, I. Dovbnia, N. Ilnitsky, S. Yuryev, V. Mokliak

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




