Characterization of (As2S3)1-x(Bi2S3)x glasses by DC conductivity

Authors

  • I.M. Voynarovych Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • S.M. Hasynets Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • V.V. Halyan Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • S.I. Pavley Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • V.V. Lopushansky Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • V.V. Rubish Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • O.O. Gomonnai Uzhhorod National University, Uzhhorod, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.3.607-612

Keywords:

amorphous chalcogenides, DC conductivity, Bi2S3

Abstract

We present DC conductivity measurements of newly synthesised and thermally annealed (As2S3)1-x (Bi2S3)x (0.08 ≤ x ≤ 0.14) glasses. X-ray diffraction measurements show that as-prepared As2S3)1-x(Bi2S3)x glasses were amorphous and after annealing of the samples nucleation and growth of Bi2S3 crystallites in an amorphous matrix occurs. Increasing concentration of bismuth sulfide crystalline inclusions leads to an increase in specific conductivity 10-10S/m, and decrease in activation energy from 1.2 eV for As2S3 down to 0.95 eV for (As2S3)1-x(Bi2S3)x with x = 0.14. Recrystallization of bismuth-containing alloys leads to a sharp increase in specific conductivity, and a decrease in the activation energy that can be explained within the framework of the model of micro-inhomogeneous conductivity or by the percolation mechanism.

References

K. Tanaka, K. Shimakawa, Amorphous chalcogenide semiconductors and related materials (Springer, 2021); https://doi.org/10.1007/978-3-030-69598-9.

A. Zakery, S. R. Elliott, Optical properties and applications of chalcogenide glasses: a review, J. Non-Cryst. Solids, 330, 1 (2003); https://doi.org/10.1016/j.jnoncrysol.2003.08.064.

K. Tanaka, A.Saitoh, Pulsed light effects in amorphous As2S3, J. Mater. Sci.: Mater. in Electron., 33, 22029 (2022); https://doi.org/10.1007/s10854-022-08989-x.

B. Luther-Davies, Integrated optics: flexible chalcogenide photonics Nature Photonics, 8, 591 (2014); https://doi.org/10.1038/nphoton.2014.169.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices, Nat. Photonics, 8 (8), 643 (2014); https://doi.org/10.1038/nphoton.2014.138.

L. Wang, J. Zeng, L. Zhu, D. Yang, Q. Zhang, P. Zhang, X. Wang, S. Dai, All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers, Appl. Opt. 57, 10044 (2018); https://doi.org/10.1364/AO.57.010044.

M. Šiljegovic, S. R. Lukić-Petrović, D. D. Štrbac, N. Celić, I. R.Videnović, Dependence of chalcogenide glassy Bix(As2S3)100-x system optical parameters on the doping content, Acta Phys. Polon. A., 134 (2), 498 (2018); https://doi.org/10.12693/APhysPolA.134.498.

R. Naik, R. Ganesan, K. S. Sangunni, Optical properties change with the addition and diffusion of Bi to As2S3 in the Bi/As2S3 bilayer thin film, J. Alloys Comp. 554, 293 (2013); https://doi.org/10.1016/j.jallcom.2012.11.198.

T. O. Ajiboye, D. C. Onwudiwe, Bismuth sulfide based compounds: properties, synthesis and applications, Results Chem., 3, 100151 (2021); https://doi.org/10.1016/j.rechem.2021.100151.

I. Voynarovych, V. Pinzenik, I. Makauz, M. Shiplyak, S. Kokenyesi, L. Daroczi Nanocrystallites in Bi–As–S system, J. Non-Cryst. Solids, 353 (13), 1478 (2007); https://doi.org/10.1016/j.jnoncrysol.2006.10.073.

S. R. Elliott, Physics of amorphous materials (Longman, London, 1990).

M. V. Šiljegović, S. R. Lukić, F. Skuban, D. M. Petrović, M. Slankamenac, Analysis of conductivity of glasses from the (As2S3)100-xBix system in direct and alternating regimes, JOAM, 11, 2049 (2009);

B. Karmakar, K. Rademann, A. Stepanov, Glass Nanocomposites: Synthesis, Properties and Applications (Elsevier, 2016).

P. Phogat, Shreya, R. Jha, S. Singh. Chalcogenide Nanocomposites for Energy Materials, Engineering and Technology Journal, 9, 4580 (2024); https://doi.org/10.47191/etj/v9i07.29.

V. M. Kryshenik, S. M. Hasynets, A. M. Solomon, V. Y. Loya, V. V. Lopushansky, V. M. Rubish, A. V. Gomonnai, Temperature-induced phase transformation in (As1 xBix)2S3 glasses. Low Temp. Phys., 51 (1), 88 (2025); https://doi.org/10.1063/10.0034651.

Y. Azhniuk, V. Lopushansky, S. Hasynets, V. Kryshenik, A. V. Gomonnai, D. R. T. Zahn, Photoinduced transformations in (As1–xBix)2S3 glass observed by Raman spectroscopy, J. Raman Spectrosc., 55 (5), 637 (2024); https://doi.org/10.1002/jrs.6658.

M. V. Šiljegović, J. Petrović, D. Sekulić, F. Skuban, S. R. Lukić-Petrović, Impedance response and I–V characteristics of Bi6(As2S3)94 and Bi7(As2S3)93 at elevated temperature, J. Mater. Sci.: Mater. in Electron., 31 (17), 14730 (2020); https://doi.org/10.1007/s10854-020-04036-9.

Y .Xu, J. Qi, C. Lin, P. Zhang, S. Dai, Nanocrystal-enhanced near-IR emission in the bismuth-doped chalcogenide glasses, Chin. Opt. Lett., 11 (4), 041601 (2013); https://opg.optica.org/col/abstract.cfm?URI=col-11-4-041601.

A. Kyono, M. Kimata, Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3, American Mineralogist, 89, 932 (2004); https://doi.org/10.2138/am-2004-0702.

R. Naik, P. P. Sahoo, C. Sripan, R. Ganesan, Laser induced Bi diffusion in As40S60 thin films and the optical properties change probed by FTIR and XPS, Opt. Mater., 62, 211 (2016); https://doi.org/10.1016/j.optmat.2016.10.004.

M. Behera, R. Naik, C. Sripan, R. Ganesan, N. C. Mishra, Influence of Bi content on linear and nonlinear optical properties of As40Se60-xBix chalcogenide thin films, Current Applied Physics, 19 (8), 884 (2019); https://doi.org/10.1016/j.cap.2019.05.007.

E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22 903 (1970); https://doi.org/10.1080/14786437008221061.

S. R. Elliott, A. T. Steel, Mechanism for doping in Bi chalcogenide glasses, Phys. Rev. Lett. 57 (11), 1316 (1986); https://doi.org/10.1103/PhysRevLett.57.1316.

K. L. Bhatia, Structural changes induced by Bi doping in n-type amorphous (GeSe3.5)100 xBix, J. Non-Cryst. Solids, 54 (1), 173 (1983); https://doi.org/10.1016/0022-3093(83)90091-1.

R. Golovchak, O. Shpotyuk, A. Kovalskiy, A. C. Miller, J. Čech, H. Jain, Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements, Phys. Rev. B., 77 (17), 172201 (2008); https://doi.org/10.1103/PhysRevB.77.172201.

V. V. Kabanov, K. Zagar, D. Mihailovic. Electrical conductivity of inhomogeneous two component media in two dimensions, J. Exp. Theor. Phys., 100, 715 (2005); https://doi.org/10.1134/1.1926432L.

R. Landauer, Electrical conductivity in inhomogeneous media, AIP Conf. Proc.; 40 (1), 2 (1978); https://doi.org/10.1063/1.31150.

O. Madelung, Semiconductors Data Handbook (Berlin, Springer, 2004).

Published

2025-09-19

How to Cite

Voynarovych, I., Hasynets, S., Halyan, V., Pavley, S., Lopushansky, V., Rubish, V., & Gomonnai , O. (2025). Characterization of (As2S3)1-x(Bi2S3)x glasses by DC conductivity. Physics and Chemistry of Solid State, 26(3), 607–612. https://doi.org/10.15330/pcss.26.3.607-612

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)