Influence of heterogeneously deformed quantum heterogeneity point is a matrix for quantum-dimensional states of charges

Authors

  • R. M. Pelyashchak Ivan Franko Drohobych State Pedagogical University
  • N. Ya. Kulyk Drohobych State Pedagogical University

DOI:

https://doi.org/10.15330/pcss.16.4.641-648

Keywords:

deformation potential, theory of perturbation of quantum dot form```, mechanical equilibrium equation`, Schrödinger equation

Abstract

Taking into account the equilibrium of mechanical equilibrium, the theory of perturbation of the form of the tensile heterogeneity "quantum dot-matrix" was developed. Within the framework of the deformation potential model, taking into account the perturbation of the surface of the quantum dot, the influence of the inhomogeneously deformed heterogeneity of the "quantum dot matrix" on the quantum states of charges localized inside the quantum dot is theoretically analyzed.

References

H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka and T. Matsusue, Applied Physics Letters, 51, 1934 (1987).

I. Vurgaftman and. J.R. Meyer, Phys.Rev. B60, 14294 (1999).

P. S. Kop'ev, I. N. Ural'cev, D. R. Jakovlev, Al. L. Jefros, A. V. Vinokurova, FTP 22, 424 (1988).

H. Kalt, J. Collet, S.D. Baranovskii, Rosari Saleh, P. Thomas, Le Si Dang, and J. Cibert, Phys. Rev. B 45, 4253 (1992).

T. Taguchi, Y. Kawakami, Y. Yamada, Physica B: Condensed Matter. 191, 23 (1993).

N. N. Ledencov, S. V. Ivanov, V. M.Maksimov ta іn., FTP 29, 65 (1995).

Ju. B. Vasil'ev, S. D. Suchalkin, S. V. Ivanov ta іn., FTP 31(10), 1246 (1997).

T. Ando, J.Phys. Soc. Japan. 38, 989 (1975).

V. P. Dzjuba, Ju. N. Kul'chin, V. A. Milichko, FTT 56(2), 355 (2014).

F. M. Mors, G. Feshbah, Metody teoreticheskoj fiziki (1958), Tom 1.

A. B. Shmelev, UFN 106, 450 (1972).

L. D. Landau, E. M. Lifshic, Kvantovaja mehanika (Fizmatlit, Moskva, 2002).

Al. L. Efros, A. V. Rodina, Phys. Rev. B 47, 10005 (1993).

A. B. Migdal, Kachestvennye metody v kvantovoj teorii ( Nauka, Moskva,1975).

R. M. Peleshhak, N. Ja. Kulik, UFZh 59(11), 1099 (2014).

B. V. Novikov, G. G. Zegrja, R. M. Peleshhak ta іn., FTP 42(9), 1094 (2008).

R. M. Peleshhak, O. O. Dan'kіv, O. V. Kuzik, UFZh 56(4), 346 (2011).

A. Messija, Kvantovaja mehanіka, Vol. 1 (1978).

Published

2015-12-15

How to Cite

Pelyashchak, R. M., & Kulyk, N. Y. (2015). Influence of heterogeneously deformed quantum heterogeneity point is a matrix for quantum-dimensional states of charges. Physics and Chemistry of Solid State, 16(4), 641–648. https://doi.org/10.15330/pcss.16.4.641-648

Issue

Section

Scientific articles