Observation of Graphite-Like and Diamond-Like Nanostructures in the Raman Spectra of Natural and Synthesized MoS2 Crystals with Small Carbon Additives

Authors

  • N.E. Kornienko Taras Shevchenko National University of Kyiv
  • A.P. Naumenko Taras Shevchenko National University of Kyiv
  • L.M. Kulikov I.Frantsevich Institute for Problems in Materials Science National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.21.4.598-620

Keywords:

MoS2 nanocrystallites, MoS2 natural single crystalls, Raman spectra, graphite-like nanostructures, diamond-like nanostructures

Abstract

A comparative study of Raman spectra excited by laser radiation λL = 632.8 nm and 488 nm of natural crystals of 2H-MoS2 and nanocrystallites MoS2 (C) containing 0.5 and 1.0 wt.% Carbon additives. A detailed numerical analysis of the shape of observed D and G bands was performed. The complication of the spectra of graphite-like and diamond-like structures with the appearance of additional spectral components at 1440-1500 cm-1 and 1230-1270 cm-1 as a result of doubling the size of the corresponding elementary quasi-cells are analyzed. It is shown that the frequencies of  D-bands of diamond-like nanostructures 1297 ÷ 1302 cm-1 don’t depend on λL in contrast to the change in the frequencies of the G (k)-bands. A significant effect of 632.8 nm resonant radiation on the electronic states and properties of MoS2 (C) NC was established. The strengthening of the D bands of the diamond-like structure and the ordering of the graphite structure with increasing carbon content in MoS2 (C) nanocrystals have been established. The change of spectral positions of D, G, and G (k) bands at strengthening the degree of disordering of a diamond- and graphite-like structures is considered. The influence of laser radiation on carbon structures is discussed.

References

M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L.Zhang, A. Z. Moshfeg, Nanoscale Horiz. 3(3), 90 (2018) (https://doi.org/ 10.1039/c7nh00137a).

J. Ping, Z. Fan, M. Sindoro, Y. Ying, and H. Zhang, Adv. Funct. Mater. 27(19), 1605817 (2017) (https://doi.org/10.1002/adfm.201605817).

Q. Lv, Ruitao Lv, Carbon, 145, 240 (2019) (https://doi.org/10.1016/j.carbon.2019.01.008).

X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, J. Am. Chem. Soc. 130(23), 7176 (2008) (https://doi.org/10.1021/ja8007825).

T. Daeneke, N. Dahr, P. Atkin, R.M. Clark C.J. Harrison, et.al., ACS Nano 11(7), 6782 (2017). (http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01632).

N.E. Kornienko, Ukr. J. Phys. 47(4), 361 (2002).

F. Banhart, P.M. Ajayan, Nature 382, 433 (1996) (https://doi.org/10.1038/382433a0).

Anke Krueger, Carbon Materials and Nanotechnology, (WILEY-VCH Verlag GmbH, Weinheim, 2010) (https://doi.org/10.1002/9783527629602.ch7).

F. Banhart, Phys. Sol. State 44(3), 399 (2002) (https://doi.org/10.1134/1.1462655).

L.T. Daulton, M.A. Kirk MA, R.S. Lewis, L.E. Rehn, Nucl. Inst.Meth. Phys. Res. B 175-177, 12 (2001)

(DOI: 10.1016/S0168-583X(00)00603-0).

P. Wesolowski, Y. Lyutovich, F. Banhart, H. D. Carstanjen and H. Kronmuller, Appl. Phys. Lett., 71(15), 1948 (1997) (https://doi.org/10.1063/1.119990).

R. Nu¨ske, A. Jurgilaitis, H. Enquist, M. Harb, Y. Fang, U. Hakanson, and J. Larsson, Appl. Phys. Lett. 100(4), 043102 (2012).

N.E. Kornienko, A.P. Naumenko, V.O. Gubanov, V.E. Fedorov., S.B. Artemkina, International research and particle conference Nanotechnology and Nanomaterials (NANO-2019) (Lviv, Ukraine, 2019).

N.Е. Kornienko, Visnyk Kyivskogo Universytetu [Kyiv University Bulletin] 3, 489 (2006) (in Ukrainian).

N.E. Kornienko, N.P. Kulish, S.A. Alekseev, O.P. Dmitrenko, and E.L. Pavlenko, Optics and Spectroscopy, 109(5), 742 (2010) (https://doi.org/10.1134/S0030400X10110147).

M. Kornienko, A. Naumenko, Ukr. J.Phys. 59(3), 339 (2014) (https://doi.org/10.15407/ujpe58.02.0151).

N.E. Kornienko and A.P. Naumenko, Chemical Functionalization of Carbon Nanomaterials: Chemistry and Application (Eds. V.K.Thakur and M.K.Thakur) (Boca Raton–London–New York: CRC Press: 2015), chapter 5, 103 (2015).

V.V. Sobolev, V.V. Nemoshkalenko. Methods of computational physics in the theory of solids (Kiev, Naukova dumka, 1990) (In Russian).

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, Chem. Soc. Rev. arXiv:1502.00701v1 [cond-mat.mtrl-sci] 3 Feb 2015.

X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, and P.H. Tan, Phys. Rev. B, 87(11), 115413 (2013) (https://doi.org/10.1103/PhysRevB.87.115413).

G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 60(4), 2883 (1999) (https://doi.org/10.1103/PhysRevB.60.2883).

J.M. Chen and C.S. Wang, Solid State Communications, 14(9), 857 (1974) (https://doi.org/10.1016/0038-1098(74)90150-1).

B.C. Windom, W.G. Sawyer, D.W. Hahn, Tribol Lett. 42(3), 301 (2011) (https://doi.org/10.1007/s11249-011-9774-x).

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, J. Phys. Chem. C 115(33), 16354 (2011) (https://doi.org/10.1021/jp205116x).

Light Scattering in Solids II. Basic Concepts and Instrumentation, Edited by M. Cardona and G.Guntherodt (Springer-Verlag, Berlin-Heidelberg-New York, 1982).

L. Akselrud, Y. Grin, J. Appl. Crystallogr. 47(2), 803 (2014) (https://doi.org/10.1107/S1600576714001058).

Preparation and crystal growth of materials with layered structures”, R.M.A. Lieth (ed.), (Dordrecht-Boston, 1977), chapter 4, R.M.A. Lieth, J.C.J.M. Terhell. Transition Metal Dichalcogenides, 141-223 (https://doi.org/10.1007/978-94-017-2750-1_4).

I.G. Vasilyeva, I.P. Asanov, L.M. Kulikov. J. Phys. Chem. C, 119(40), 23259 (2015) (https://doi.org/10.1021/acs.jpcc.5b07485).

A. Naumenko, L. Kulikov, N. Konig, Ukr. J. Phуs. 61(6), 556 (2016) (https://doi.org/10.15407/ujpe61.06.0561).

S.S. Bukalov, L.A. Leites, R.R. Aysin, Advanced Materials Letters 10(8), 550(2019) (https://doi.org/10.5185/amlett.2019.2268).

A.P. Naumenko, N.E. Kornienko, V.M. Yashchuk, V.N. Bliznyuk, S. Singamaneni, Ukr. J. Phys. 57(2), 197 (2012).

A.P. Naumenko, N.E. Korniyenko, V.N. Yaschuk, S. Singamaneni,and V.N. Bliznyuk, Raman Spectroscopy for Nanomaterials Characterization, C. Kumar (ed.) (Springer- Verlag. Berlin Heidelberg. 2012).

O.Yu. Posudievsky, O.A. Khazieieva, V.V. Cherepanov, G.I. Dovbeshko, A.G. Shkavro, V.G. Koshechko, and V.D. Pokhodenko, J. Mater. Chem. C 1(39), 6411 (2013).

A.C. Ferrari and J. Robertson, Phys. Rev.B, 64(7), 075414 (2001) (https://doi.org/10.1103/PhysRevB.64.075414).

A.C. Ferrari and J. Robertson, Phil. Trans. R. Soc. Lond. A 362(1824), 2477 (2004) (https://doi.org/10.1098/rsta.2004.1452).

O.O. Mykhaylyk, Y.M. Solonin, D.N. Batchelder, R. Brydson, J. Appl. Phys. 97(7), 074302 (2005). (https://doi.org/10.1063/1.1868054).

P.H. Tan, S. Dimovski and Y. Gogotsi, Phil. Trans. R. Soc. Lond. A, 362, 2289 (2004) (https://www.jstor.org/stable/4488953).

P.H. Tan, Y.M. Deng, and Q. Zhao, Phys. Rev. B, 58(9), 5435 (1998).

C. Thomsen and S. Reich, Phys. Rev. Lett. 85(24), 5214 (2000).

C. Thomsen and S. Reich, Phil. Trans. R. Soc. Lond. A 362(1824), 2271 (2004).

M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancёado, A. Jorioa and R. Saito, Phys. Chem. Chem. Phys. 9(11), 1276 (2007) (https://doi.org/10.1039/B613962K).

V.A. Karavanskii, N.N. Mel'nik T.N. Zavaritskaya, JETP Lett. 74(3), 186 (2001) (https://doi.org/10.1134/1.1410227).

N.E. Kornienko, A.D. Rud, A.N. Kirichenko, Izvestiya vuzov, Chimiya i chimicheskaya technologiya 58(5), 25 (2015).

N.E. Kornienko, A.D. Rud, A.N. Kirichenko In: “Carbon: Fundamental Problems of Science, Material Research, Technology” (Proseedings og 9-th International Conference, Moscow, Troitsk, 2014).

N.E. Kornienko, A.N. Kirichenko, In: Proseedingsof XXV Congress on Spectroscopy (Moscow-Troitsk, 2016). Р. 291.

А.L. Vereshchagin, The properties of detonated diamonds (Barnaul, 2005).

H. Motahari and R. Malekfar, International Journal of Optics and Photonics (IJOP) 13(1), 3 (2019).

S. Osswald, V.N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, Phys. Rev. 80(7), 075419 (2009) (https://doi.org/10.1103/PhysRevB.80.075419).

J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejo´n, Phys.Rev. Lett. 92(7), 075501 (2004) (https://doi.org/10.1103/PhysRevLett.92.075501).

L. Gustavo de O. L. Cancado, Raman spectroscopy of nanographites (Setembro de, 2006).

Light Scattering in Solids III. Recent Results, Edited by M. Cardona and G.Guntherodt (Springer-Verlag, Berlin-Heidelberg-New York, 1982).

P.H. Tan, Y.M. Deng, and Q. Zhao, and W.C. Cheng, Appl. Phys. Lett. 74(13), 1818 (1999).

P. Giura, N. Bonini, G. Creff, J.B. Brubach, P. Roy, and M. Lazzeri, Phys. Rev. B 86(12), 121404(R), (2012) (https://doi.org/10.1103/PhysRevB.86.121404).

Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Phys. Lett. 398: 87 (2004) (https://doi.org/10.1016/j.cplett.2004.09.024).

K. Witke, D. Klaffke, A. Skopp and J. P. Schreckenbach, J.of Raman Spectroscopy 29, P. 411 (1998).

Y. Kawashima, G. Katagiri, Phys. Rev. B, 52(14), 10053 (1995).

Y. Kawashima, G. Katagiri, Phys.Rev. B 59(1), 62 (1999).

L. Bokobza, J. Zhang, eXPRESS Polymer Letters 6(7), 60 (2012) (https://doi.org/10.3144/expresspolymlett.2012.63).

N.Е. Kornienko, А.P. Naumenko, L.М. Kulikov, Nanosistemi, Nanomateriali, Nanotehnologii, 18(1), 15 (2020).

M. Ikram, R. Tabassum, U. Qumar, S. Ali, A.Ul-Hamid, A. Haider, A. Raza, M. Imranf and S. Ali, RSC Adv., 10(35), 20559 (2020) (https://doi.org/10.1039/d0ra02458a).

Hsiang-Lin Liu, Huaihong Guo, Teng Yang, Zhidong Zhang,Yasuaki Kumamoto, Chih-Chiang Shen, Yu-Te Hsu, Lain-Jong Li, Riichiro Saitob and Satoshi Kawatadg, Phys.Chem.Chem.Phys. 17, 14561 (2015) (https://doi.org/10.1039/c5cp01347j).

D.N. Khaemba, A. Neville and А. Morina, Tribology Letters, 59(3), 1 (2015) (https://doi.org/10.1007/s11249-015-0566-6).

A. Jagminas, G. Niaura, R. Žalnėravičius, R. Trusovas, G. Račiukaitis, V. Jasulaitiene, Sci Rep 6(1), 37514 (2016) (https://doi.org/10.1038/srep37514).

T. Wang, J. Li, G. Zhao, Powder Technol. 253(2), 347 (2014).

M.A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, E. Haro-Poniatowski, Optical Mater. 33(3), 480 (2011) (https://doi.org/10.1016/j.optmat.2010.10.028).

Latha Kumari, Yuan-Ron Ma, Chai-Chang Tsai, Yi-Way Lin, Sheng Yun Wu1, Kai-Wen Cheng and Yung Liou, Nanotechnology 18(11) ,115717 (2007) (https://doi.org/10.1088/0957-4484/18/11/115717).

Hongfei Liu, K. K. Ansah Antwi, Chengguo Li, Jifeng Ying, Soojin Chua, and Dongzhi Chi, Nanotechnology 25(40), 405702 (2014) (https://doi.org/10.1088/0957-4484/25/40/405702).

Y. Lin, W. Zhang, J. Huang, K. Liu, Y. Lee, C. Liang, C. Chu, L. Li, Nanoscale 4(2), 6637 (2012) (https://doi.org/10.1039/c2nr31833d).

Bing Han, Yun Hang Hu, Energy Science & Engineering, 4(5), 285 (2016).

W. Su, P. Wang, Z. Cai, J. Yang, X. Wang, Results in Physics, 12(3), 250 (2019) (https://doi.org/10.1016/j.rinp.2018.11.066).

M. Ikram, M.I. Khan, A. Raza, M. Imran, A. Ul-Hamid, S. Ali, Physica E: Low-demensional Systems and Nanostructures, 124(8), 114246 (2020) (https://doi.org/10.1016/j.physe.2020.114246).

A. Chithambararaj, N.S. Sanjini, S. Velmathib and A. Chandra Bose, Phys. Chem. Chem. Phys., 15(35), 14761 (2013) (https://doi.org/10.1039/C3CP51796A).

Chao Hu , Minjie Xu, Jun Zhang, Yunong Zhou, Bonian Hu, Gang Yu, Chemical Kinetics 5(1), 3 (2019)

Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Lett, 11(10), 4168 (2011) (https://doi.org/10.1021/nl2020476).

N. Zamora-Romero, M.A. Camacho-Lopez, A.R. Vilchis-Nestor, V.H. Castrejon-Sanchez, G. Aguilar, S. Camacho-Lopez, M. Camacho-Lopez, Materials Chemistry and Physics, 240 122163 (2020).

N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Appl. Surf. Sci., 396(2), 8 (2017) (https://doi.org/10.1016/j.apsusc.2016.11.027).

S. Stehlik, M. Varga, M. Ledinsky, D. Miliaieva, Sci Rep 6(12), 38419 (2016). (https://doi.org/10.1038/srep38419).

N.E. Kornienko, Physics of the Alive 16(1), 5 (2008).

N.E. Kornienko, Physics of the Alive 17(2), 5 (2009).

M.K. Kuntumalla, V.V.S. Siva Srikanth, S. Ravulapalli, U. Gangadharini, H. Ojha, N.R. Desai and C. Bansal, Phys. Chem. Chem. Phys. 17(33), 21331 (2015) (https://doi.org/10.1039/C4CP05236F).

M. Levy, A. Albu-Yaron, R. Tenne, D. Feuermann, E.A. Katz, D. Babai, and J.M. Gordon, Israel J. Chem. 50(4), 417 (2010) (https://doi.org/10.1002/ijch.201000056).

M. Chhowalla, G.A.J. Amaratunga, Nature 407(6801), 164 (2000) (https://doi.org/10.1038/35025020).

P.H. Tan, L. An, L.Q. Liu, Z.X. Guo, R. Czerw, D.L. Carroll, P.M. Ajayan, N. Zhang, and H.L. Guo, Phys. Rev. B. 66(24), 245410 (2002) (https://doi.org/10.1103/PhysRevB.66.245410).

V.V. Strelchuk, A.S. Nikolenko, V.O. Gubanov, M.M. Biliy, and L.A. Bulavin, Journal of Nanoscience and Nanotechnology 12(11), 8671 (2012) (https://doi.org/10.1166/jnn.2012.6815).

F.C.B. Maia, R.E. Samad, J. Bettini, R.O. Freitas, N.D.V. Junior, N.M. Souza-Neto, Scientific Reports 5(1), 11812 (2015) (https://doi.org /10.1038/srep11812).

J.A. Alonso, Structure and Properties of Atomic Nanoclusters (Universidad de Valladolid, Spain, 2nd Edition, by Imperial College Press, 2012).

N.E. Korniyenko, N.Р. Smolyar, Abstracs of XVI-th Int. School-Seminar “Spectroscopy of Molec. and Crystals (Sevastopol, 2003), p.153.

N.E. Kornienko, In: Actial problems of solid state physics (Reports of International scientific conference FTT, Minsk, 2007).

T.N. Zavarnitskaya, N.N. Mel’nik, V.A. Karavanskii, JETP Letters 79(6), 340 (2004) (https://doi.org/10.1134/1.1759410).

M.E. Kornienko, N.L. Sheiko, O.M. Kornienko, T.Yu. Nikolaenko, Ukr. J. Phys., 58(2), 151 (2013) (https://doi.org/10.15407/ujpe58.02).

N.E. Kornienko, A.N. Kirichenko, Izvestiya vuzov 59(9), 50 (2016).

.N.E. Kornienko,V.I. Grygoruk, A.N. Kornienko, Tambov University Reports. Series: Natural and Technical Sciences 15(3), 953 (2010).

P. Rai, D.R. Mohapatra, K.S. Hazra, D.S. Misra, Jay Ghatak, P.V. Satyam, Chem. Phys. Lett. 455(1-3), 83 (2008) (https://doi.org /10.1016/j.cplett.2008.02.057).

Published

2020-12-30

How to Cite

Kornienko, N., Naumenko, A., & Kulikov, L. (2020). Observation of Graphite-Like and Diamond-Like Nanostructures in the Raman Spectra of Natural and Synthesized MoS2 Crystals with Small Carbon Additives. Physics and Chemistry of Solid State, 21(4), 598–620. https://doi.org/10.15330/pcss.21.4.598-620

Issue

Section

Scientific articles