Electronic, structural and optical properties of zincblend and wurtizite cadmium selenide (CdSe) using density functional theory and hubbard correction

Array

Authors

  • Teshome Gerbaba Edossa Wollega University
  • Menberu Woldemariam Jimma University

DOI:

https://doi.org/10.15330/pcss.22.1.16-23

Keywords:

Cadmium Sulfide, DFT, equilibrium lattice constant, band structure, optical properties

Abstract

Zinc blend (zb) and wurtizite (wz) structure of cadmium selenide (CdSe) is determined using density-functional theory within local density approximation (LDA), generalized gradient approximation (GGA), Hubbard-correction (GGA+U) and Hybrid functional approximation (PBE0 or HSE06). The first principle pseudopotential plane wave is used and the relaxed atomic position for the CdSe in zb and wz structure was obtained by using total energy and force minimization method following the Hellmann Feynman approach. The convergence test of total energy with respect to cutoff energy and k-point sampling is performed . The equilibrium lattice constant and unit cell volume of CdSe in both phases are calculated and the obtained value is compared` with experimental values. In addition the band gap of CdSe is analyzed using DFT within LDA, GGA, DFT+U and PBE0 to approximate the unknown exchange correlation functional. The band gap values obtained using LDA and GGA are severally under estimated due to their poor approximation of exchange-correlation potential. This problem was improved by using projector augmented-wave pseudopotential within Hubbard-correction (GGA+U) and the hybrid functional approximation. Optical properties: complex and real parts of dielectric function, energy loss spectrum and absorption coefficient of CdSe in both ZB and WZ phase were studied.

References

S. Datta, T. Saha-Dasgupta and D. D. Sarma, J. Phys.: Condens.Matter. 20, 445217 (2008) (https://doi.org/10.1088/0953-8984/20/44/445217).

A.L. Efros and M. Rosen, The electronic structure of semiconductor nano crystals, Annu. Rev. Mater. Sci. 30, 475 (2000) (https://doi.org/10.1146/annurev.matsci.30.1.475).

K.R. Murali, V. Swaminathan & D.C. Trivedi, Solar Energy Materials & Solar Cells 81(1), 11 (2004) (https://doi.org/10.1016/j.solmat.2003.08.019).

S.T. Bulbula. & H.W. Zeweldi, Advances in Materials Science and Engineering 2015, 1 (2015) (https://doi.org/10.1155/2015/847693).

A.S. Khomane, P.P. Hankare, Journal of Alloys and Compounds, 489(2), 605 (2010) (https://doi.org/10.1016/j.jallcom.2009.09.122).

S. Sharma and A.S. Verma, Advanced Materials Research 665, 302 (2013) (https://doi.org/10.4028/www.scientific.net/AMR.665.302).

M.A. Schreuder, K. Xiao, I.N, Ivanov, S.M. Weiss and S.J. Rosenthal, Nano Lett. 10, 573 (2010) (https://doi.org/10.1021/nl903515g).

M.C. Schlamp , X. Peng X and A.P. Alivisatos, J. Appl. Phys. 82, 5837 (1997) (https://doi.org/10.1063/1.366452).

M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris and L.E. Brus, Nature, 383, 802 (1996) (https://doi.org/10.1038/383802a0).

D. Thomas, H.O. Le III, K.C. Santiago, et al., Journal of nanometerials 2020, 1 (2020) (https://doi.org/10.1155/2020/5056875).

L. Qu and X. Peng, J. Am. Chem. Soc. 124(9), 2049 (2002) (https://doi.org/10.1021/ja017002j).

B. Sun, E. Marx and N.C. Greenham, Nano Lett. 3(7), 96 (2003) (https://doi.org/10.1021/nl0342895).

C.E. Hamilton, D.J. Flood and A.R. Barron, Phys. Chem. Chem. Phys. 15, 3930 (2013) (https://doi.org/10.1039/C3CP50435B).

V.A. Fedorov, V.A. Ganshin, & Yu.N. Korkishko, Physica status solidi (a), 28 1 (1991) (https://doi.org/10.1002/pssa.2211260133).

Su-Huai Wei and S.B. Zhang, Phy. Rev. B 62, 6944 (2000) (https://doi.org/10.1103/PhysRevB.62.6944).

K.O. Magnusson, G. Neuhold, K. Horn and D.A. Evans, Phy. Rev. B 57, 8945 (1998) (https://doi.org/10.1103/PhysRevB.57.8945).

E. Deligoz, K. Colakoglu and Y. Ciftci, Physica B 373, 124 (2006) (https://doi.org/10.1016/j.physb.2005.11.099).

D. Singh, A.K. Bandyopadhyay, M. Rajagopalan, P.Ch. Sahu, M. Yousuf and K. Govinda Rajan, Solid state Commun 109(5), 339 (1999) (https://doi.org/10.1016/S0038-1098(98)00552-3).

H. Eschrig, The Fundamentals of Density Functional Theory (Springer Vieweg, 1st edn, 1 (1996). (https://doi.org/10.1007/978-3-322-97620-8).

Li, Bo., Density-Functional Theory and Quantum Chemistry Studies on dry and wet NaCl (001), PhD Thesis, 1 (2008) (http://hdl.handle.net/11858/00-001M-0000-0010-FB4E-2).

K. Deguchi, Y. Takano, and Y. Mizuguchi, Science and Technology of Advanced materials 13(5), 1 (2012) (https://doi.org/10.1088/1468- 6996/13/5/054303).

A.S.Z. Lahewil, Y. Al-Douri, U. Hashim & N.M. Ahmed, Procedia Engineering 53, 217 (2013) (https://doi.org/10.1016/j.proeng.2013.02.029).

Lev I. Berger, Semiconductor materials, (CRC Press, France 1st edn., Frrance, 1996) (ISBN 0-8493-8912-7) (https://doi.org/10.1103/PhysRevLett.77.3865).

P. Giannozzi et al, J. Phys: Condens. Matter. 9(46), 1 (2017) (https://doi.org/10.1088/1361-648X/aa8f79).

P. Giannozzi et al, J. Phys.: Condens. Matter. 21(39) 1 (2009) (https://doi.org/10.1088/0953-8984/21/39/395502).

J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981) (https://doi.org/10.1103/PhysRevB.23.5048).

J.P. Perdew, K. Burke, and M. Ernzerhov, Phys. Rev. Lett. 77 3865 (1996). (https://doi.org/10.1103/PhysRevLett.77.3865).

S.L. Dudarev, G.A. Dudarev, S.Y. Savrasov, et al., Phys Rev. B, 57(3), 1505 (1998) (https://doi.org/10.1103/PhysRevLett.77.3865).

D. Fritch, B.J. Moorgan and A. Walsh, Nanoscale Research Letters 12(19), 1 (2017) (https://doi.org/10.1186/s11671-016-1779-9).

K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Computational material science 81, 446 (2014) (http://dx.doi.org/10.1016/j.commatsci.2013.08.053).

M. Topsakal, R.M Wentzcovitch, Computational material science, 95, 263 (2014) (http://dx.doi.org/10.1016/j.commatsci.2014.07.030).

Monkhorst, Hendrik J., and James D. Pack, Phys. Rev. B, 13(12), 5188 (19762) (https://doi.org/10.1103/PhysRevB.13.5188).

P. Gopal et al, Phys. Rev. B 91, 2452021 (2015) (https://doi.org/10.1103/PhysRevB.91.245202).

D. Prasadh P.S., B.K. Sarkar, Mechanics, Materials Science & Engineering Journal, Magnolithe, 9 (2017) ISSN 2412-5954 (https://doi.org/10.2412/mmse.32.38.817).

E. Deligoz, K. Colakoglu and Y. Ciftci, Physica B 373 (2006), 124 (2005) (https://doi.org/10.1016/j.physb.2005.11.099).

O. Zakharov, A. Rubio, & M. L. Cohen, Physical Review B, 51(8) 4926 (1995) (https://doi.org/10.1103/PhysRevB.51.4926).

O. Madelung, Semiconductors: Data Hand book (Springer, New York, NY, USA, 2004).

K. Capelle, Brazilian Journal of Physics 36(4), 1 (2006) (https://doi.org/10.1590/S0103-97332006000700035).

S. Thirumavalan, K. Mani, and S. Sresh, Chalcogenide Letters 12(5), 237 (2015) (ISSN 1584-8663).

N.A. Noor, et al., Journal of Alloys and Compounds 507, 356 (2010) (https://doi.org/10.1016/j.jallcom.2010.07.197).

N. Ullah, G. Murtaza, R. Khenata, K.M. Wong & Z.A. Alahmed, A multinational journal 87(6), 571 (2013) (https://doi.org/10.1080/01411594.2014.886110).

J.M. Carcione, F. Cavalline, J. Ba, et al., Rheol Acta, 58, 28, (2019) (https://doi.org/10.1007/s00397-018-1119-3).

C. Janowitz, et al., Phys. Rev. B 50, 2181 (1994) (https://doi.org/10.1103/PhysRevB.50.2181).

Downloads

Published

2021-01-25

How to Cite

Edossa, T. G. ., & Woldemariam, M. (2021). Electronic, structural and optical properties of zincblend and wurtizite cadmium selenide (CdSe) using density functional theory and hubbard correction: Array. Physics and Chemistry of Solid State, 22(1), 16–23. https://doi.org/10.15330/pcss.22.1.16-23

Issue

Section

Scientific articles