Methods of obtaining nickel molybdates and composites of molybdate/carbon material for electrodes of hybrid supercapacitors (Review)

Authors

  • O.M. Popovych Vasyl Stefanyk Precarpathian National University
  • I.M. Budzulyak Vasyl Stefanyk Precarpathian National University
  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • O.V. Popovych Vasyl Stefanyk Precarpathian National University
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University
  • R.V. Ilnytskyi Vasyl Stefanyk Precarpathian National University
  • L.S. Yablon Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.21.4.650-659

Keywords:

nickel molibdate, supercapacitor, synthesis, specific capacitance, carbon material

Abstract

Nickel molybdate due to its electronic configuration, stable crystalline framework, oxidation-reduction behavior displays perfect physical and chemical properties and rather high electrical conductivity that altogether lets the material display high total capacity. The research work classified modern methods of obtaining nickel molybdates and composites with carbon material on their basis. We have analyzed the fundamental stages of hydrothermal, microwave synthesis, ultrasonic dispersion, mechano-chemical, sol-gel method, and chemical precipitation method. The influence of different synthesis conditions on phase structure, morphology, physical and electrochemical properties of material was displayed.

Author Biographies

O.M. Popovych, Vasyl Stefanyk Precarpathian National University

Doctoral student of the Department of Material Science and New Technology

I.M. Budzulyak, Vasyl Stefanyk Precarpathian National University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Material Science and New Technology

V.O. Kotsyubynsky, Vasyl Stefanyk Precarpathian National University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Material Science and New Technology

O.V. Popovych, Vasyl Stefanyk Precarpathian National University

PhD student of the Department of Material Science and New Technology

B.I. Rachiy, Vasyl Stefanyk Precarpathian National University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Material Science and New Technology

L.S. Yablon, Vasyl Stefanyk Precarpathian National University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Physics and Methods of Teaching

References

O.M. Khemii, I.M. Budzuliak, V.O. Kotsyubynsky, L.S. Yablon, R.V. Ilnytskyi, V.M. Boychuk, O.V. Morushko, K.V. Bandura, M.M. Khemii, Materials Science-Poland 37(4), 547 (2019) (DOI: https://doi.org/10.2478/msp-2019-0077).

L.S. Yablon, I.М. Budzulyak, M.V. Karpets, V.V. Strelchuk, S.I. Budzulyak, I.P. Yaremiy, О.М. Hemiy, О.V. Morushko, J. Nano- Electron. Phys. 8(2), 02029 (2016) (DOI: https://doi.org/10.21272/jnep.8(2).02029).

G. Jiang, L. Li, Z. Xie, B. Cao, Ceramics International 45(15), 18462 (2019) (DOI: https://doi.org/10.1016/j.ceramint.2019.06.064).

L. S. Yablon, I. M. Budzulyak, O. V. Morushko, R. V. Ilnythky, O. M. Hemiy, and A. I. Kachmar, Nanosistemi, Nanomateriali, Nanotehnologii 15(4), 741 (2017) (DOI: https://doi.org/10.15407/nnn.15.04.0741).

S. L. Revo, I. M. Budzulyak, B. I. Rachiy, M. M. Kuzishin, Surf. Engin. Appl. Electrochem 49, 68 (2013) (DOI: https://doi.org/10.3103/S1068375513010122).

H.Fang, L.S.Zhang, Y.L.Xing, S.C.Zhang, S.D.Wu, Int. J. Electrochem. Sc. 13(9), 8736 (2018) (DOI: https://doi.org/10.20964/2018.09.21 ).

Z. Liu, Y.Zhang, J. Feng, Q. Han, Q. Wei, Sensors and Actuators B: Chemical 287, 551 (20 19) (DOI: https://doi.org/10.1016/j.snb.2019.02.079).

O.M. Hemiy, I.M. Budzulyak, L.S. Yablon, D.I. Popovych, O.V. Morushko, Nanosistemi, Nanomateriali, Nanotehnologii 14(1), 147 (2016) (DOI: https://www.imp.kiev.ua/nanosys/media/pdf/2016/1/nano_vol14_iss1_p0147p0155_2016.pdf ).

Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H. M. Cheng, Advanced Functional Materials, 20 (20), 3595 (2010) (DOI: https://doi.org/10.1002/adfm.201001054).

M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16 (16), 3184 (2004) (DOI: https://doi.org/10.1021/cm049649j).

M. H. Bai, L. J. Bian, Y. Song, X. X. Liu, ACS Appl. Mater. Interfaces 6 (15) 12656 (2014) (DOI: https://doi.org/10.1021/am502630g).

L. S. Yablon, V. V. Strelchuk, I. M. Budzulyak, S.I. Budzulyak, O.V. Morushko, B.I. Rachiy, O.M. Hemiy, J. Nano- Electron. Phys. 7 (3), 03016 (2015) (DOI: https://jnep.sumdu.edu.ua/download/numbers/2015/3/articles/jnep_2015_V7_03016.pdf).

I. M. Budzulyak, O. M. Khemii, O. V. Morushko, D. I. Popovych, Yu. Starchuk, L. S. Yablon, Nanosistemi, Nanomateriali, Nanotehnologii 17 (4), 0689 (2019), (DOI: https://www.imp.kiev.ua/nanosys/media/pdf/2019/4/nano_vol17_iss4_p0689p0700_2019.pdf).

X. Xia, W. Lei, Q. Hao, W. Wang, X. Wang, Electrochim. Acta 99, 253 (2013) (DOI: https://doi.org/10.1016/j.electacta.2013.03.131).

K. Seevakan, A. Manikandan, P. Devendran, A. Baykal, T. Alagesan, Ceram. Int. 44 (15), 17735(2018) (DOI: https://doi.org/10.1016/j.ceramint.2018.06.240).

P. R. Jothi, K. Shanthi, R. R. Salunkhe, M. Pramanik, V. Malgras, S. M. Alshehriand, Y. Yamauchi, Eur. J. Inorg. Chem. 22, 3694 (2015) (DOI: https://doi.org/10.1002/ejic.201500410).

G. Kianpour, F. Soofivand, M. Badiei, M. S-. Niasariand M. Hamadanian, J. Mater. Sci.: Mater. Electron. 27, 10244 (2016) (DOI: https://doi.org/10.1007/s10854-016-5103-3 ).

P. R. Jothi, S. Kannanand G. Velayutham, J. Power Sources 277, 350 (2015) (DOI: https://doi.org/10.1016/j.jpowsour.2014.11.137).

V. Umapathy, P. Neeraja, A. Manikandanand P. Ramu, Trans. Nonferrous Met. Soc. China 27 (8), 1785 (2017) (DOI: https://doi.org/10.1016/S1003-6326(17)60201-2).

S. F. Matar, A. Largeteauand G. Demazeau, Solid State Sci. 12 (10), 1779 (2010) (DOI: https://doi.org/10.1016/j.solidstatesciences.2010.07.030).

A. W. Sleight, Acta Cryst. B 28, 2899 (1972) (DOI: https://doi.org/10.1107/S0567740872007186).

G. Boopathy, M. Keerthi, S.-M. Chen, M. Umapathy, B.N. Kumar, Mater.Chem. Phys., 239, 121982 (2020) (DOI: https://doi.org/10.1016/j.matchemphys.2019.121982).

G. W. Smith, Acta Crystallographica, 15(10), 1054 (1962) (DOI: https://doi.org/10.1107/S0365110X62002765).

A. W. Sleight, B. L. Chamberland, Inorganic Chemistry 7(8), 1672 (1968) (DOI: https://doi.org/10.1021/ic50066a050).

M. Wiesmann, H. Ehrenberg, G. Wltschek, P. Zinn, H. Weitzel, H. Fuess, Journal of magnetism and magnetic materials 150(1), L1(1995) (DOI: https://doi.org/10.1016/0304-8853(95)00516-1).

J. A. Rodriguez, S.Chaturvedi, J. C. Hanson, J. L. Brito, The Journal of Physical Chemistry B 103(5), 770 (1999) (DOI: https://doi.org/10.1021/jp983115m).

Y.Huang, F.Cui, Y.Zhao, J.Lian, J.Bao, H.Li, J. Alloys Compd. 753, 176 (2018) (DOI: https://doi.org/10.1016/j.jallcom.2018.04.060).

Y.Zhang, H.-L.Gao, X.-D.Jia, S.-W.Wang, J.Yan, H.-W.Luo, K.-Z.Gao, H.Fang, A.-Q.Zhang, L.-Z.Wang, J.Renew. Sustain. Ener. 10, 054101 (2018) (DOI: https://doi.org/10.1063/1.5032271).

H.Xuan, Y.Xu, Y.Zhang, H.Li, P.Han, Y.Du, J. Alloys Compd. 745, 135 (2018) (DOI: https://doi.org/10.1016/j.jallcom.2018.02.172).

Y. Ding, Y. Wan, Y. L. Min, W. Zhang, S. H. Yu, Inorganic Chemistry, 47 (17), 7813 (2008) (DOI: https://doi.org/10.1021/ic8007975).

D. Cai, D.Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, T. Wang, ACS applied materials & interfaces 5(24), 12905 (2013) (DOI: https://doi.org/10.1021/am403444v).

S. Peng, L.Li, H. B. Wu, S. Madhavi, X. W. Lou, Advanced Energy Materials 5(2), 1401172 (2015) (DOI: https://doi.org/10.1002/aenm.201401172).

B. Senthilkumar, R. K. Selvan, Journal of colloid and interface science 426, 280 (2014) (DOI: https://doi.org/10.1016/j.jcis.2014.04.010).

L. Lin, T. Liu, J. Liu, R. Sun, J. Hao, K. Ji, Z, Applied Surface Science, 360(А), 234(2016) (DOI: https://doi.org/10.1016/j.apsusc.2015.11.018).

N. S. Neeraj, B. Mordina, A. K.Srivastava, K.Mukhopadhyay, N. E. Prasad, Applied Surface Science 473, 807 (2019) (DOI: https://doi.org/10.1016/j.apsusc.2018.12.220).

E. R. Ezeigwe, P. S.Khiew, C. W. Siong, M. T. Tan, Ceramics International, 43(16), 13772 (2017) (DOI: https://doi.org/10.1016/j.ceramint.2017.07.092).

X. Feng, J.Ning, D. Wang, J. Zhang, M. Xia, Y. Wang, Y. Hao, Journal of Alloys and Compounds 816, 152625 (2020) (DOI: https://doi.org/10.1016/j.jallcom.2019.152625).

Y. Abbas, S. Yun, M. S. Javed, J. Chen, M. F. Tahir, Z. Wang, Z. Hussain, Ceramics International, 46(4), 4470(2020) (DOI: https://doi.org/10.1016/j.ceramint.2019.10.173).

O. P. Bolade, A. B. Williams, N. U. Benson, Environmental Nanotechnology, Monitoring & Management 13, 100279 (2020) (DOI: https://doi.org/10.1016/j.enmm.2019.100279).

I.M. Budzulyak, L.S. Yablon, R.V. Ilnytskyi, O.V. Morushko, O.M. Hemiy, J. Nano- Electron. Phys. 10(2), 02016 (2018) (DOI: https://doi.org/10.21272/jnep.10(2).02016).

M. Oghbaei, O. Mirzaee, Journal of alloys and compounds 494(1-2), 175(2010) (DOI: https://doi.org/10.1016/j.jallcom.2010.01.068).

H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, Y. Ruan, Materials Letters, 108, 164 (2013). (DOI: https://doi.org/10.1016/j.matlet.2013.06.099).

A. Ajay, A. Paravannoor, J. Joseph, V. Amruthalakshmi, S. S. Anoop, S. V. Nair, A. Balakrishnan, Applied Surface Science, 326, 39 (2015) (DOI: https://doi.org/10.1016/j.apsusc.2014.11.016).

K. Seevakan, A.Manikandan, P. Devendran, A. Shameem, T. Alagesan, Ceramics International 44(12), 13879 (2018) (DOI: https://doi.org/10.1016/j.ceramint.2018.04.235).

T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, W. Zhou, Electrochimica Acta 180, 998 (2015) (DOI: https://doi.org/10.1016/j.electacta.2015.07.175).

A. Henglein, Ultrasonics, 25(1), 6 (1987) (DOI: https://doi.org/10.1016/0041-624X(87)90003-5).

D. Parviz, M.Kazemeini, A. M. Rashidi, K. J. Jozani, Journal of Nanoparticle Research, 12(4), 1509(2010) (DOI: https://doi.org/10.1007/s11051-009-9727-6).

R. N. Panda, S. Kaskel, Journal of materials science 41(8), 2465(2006) (DOI: https://doi.org/10.1007/s10853-006-5112-3).

M. Sautel, G. Thomas, A. Kaddouri, C. Mazzocchia, R. Anouchinsky, Applied Catalysis A: General, 155(2), 217 (1997) (DOI: https://doi.org/10.1016/S0926-860X(96)00401-2).

G. Kianpour, M. Salavati-Niasari, H. Emadi, Ultrasonics sonochemistry 20(1), 418 (2013) (DOI: https://doi.org/10.1016/j.ultsonch.2012.08.012).

C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J. M. Herrmann, G. Thomas, Catalysis Letters 10(3-4), 181(1991) (DOI: https://doi.org/10.1007/BF00772070).

F. Di Renzo, C. Mazzocchia, Thermochimica Acta 85, 139 (1985) (DOI: https://doi.org/10.1016/0040-6031(85)85549-0).

O. Lezla, E. Bordes, P. Courtine, G. Hecquet, Journal of Catalysis, 170(2), 346(1997) (DOI: https://doi.org/10.1006/jcat.1997.1759).

M. V. da Silva, D. F. de Oliveira, H. S. Oliveira, K. P. Siqueira, Materials Research Bulletin 122, 110665(2020) (DOI: https://doi.org/10.1016/j.materresbull.2019.110665).

A. Kaddouri, E. Tempesti, C. Mazzocchia, Materials Research Bulletin 39(4-5), 695(2004) (DOI: https://doi.org/10.1016/j.materresbull.2003.11.005).

M. Yang, Q. Bai, C. Ding, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125276 (2020) (DOI: https://doi.org/10.1016/j.colsurfa.2020.125276).

M. Masteri-Farahani, S. Mahdavi, M. Rafizadeh, Ceramics International 39(4), 4619(2013) (DOI: https://doi.org/10.1016/j.ceramint.2012.11.059).

Y. Mi, Z. Huang, F. Hu, J. Jiang, Y. Li, Materials Letters 64(6), 695(2010) (DOI: https://doi.org/10.1016/j.matlet.2009.12.041).

D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Journal of alloys and compounds 422(1-2), 53(2006) (DOI: https://doi.org/10.1016/j.jallcom.2005.11.073).

X. Lu, W. Jia, H. Chai, J. Hu, S. Wang, Y. Cao, Journal of colloid and interface science 534, 322 (2019) (DOI: https://doi.org/10.1016/j.jcis.2018.09.042).

Downloads

Published

2020-12-30

How to Cite

Popovych, O., Budzulyak, I., Kotsyubynsky, V., Popovych, O., Rachiy, B., Ilnytskyi, R., & Yablon, L. (2020). Methods of obtaining nickel molybdates and composites of molybdate/carbon material for electrodes of hybrid supercapacitors (Review). Physics and Chemistry of Solid State, 21(4), 650–659. https://doi.org/10.15330/pcss.21.4.650-659

Issue

Section

Scientific articles