Preparation and Characterization of Nanosized Substituted Perovskite Compounds with Orthorhombic Structure

Authors

  • M.B. Khanvilkar Savitribai Phule Pune University
  • A.K. Nikumbh Savitribai Phule Pune University
  • R.A. Pawar Savitribai Phule Pune University
  • N.J. Karale Savitribai Phule Pune University
  • D.V. Nighot Savitribai Phule Pune University
  • R.C. Ambare K.M.C.College
  • P.A. Nagwade Savitribai Phule Pune University
  • M.D. Sangale Savitribai Phule Pune University (Formerly University of Pune)
  • G.S. Gugale Savitribai Phule Pune University (Formerly University of Pune)
  • S.B. Misal Savitribai Phule Pune University (Formerly University of Pune)

DOI:

https://doi.org/10.15330/pcss.22.4.664-686

Keywords:

Nanosized substituted perovskite, ferromagnetism, electrical conductivity, magnetization, exchange interaction

Abstract

In this work, five substituted perovskite such as (Gd0.9Sr0.1) Mn0.8Co0.2O3, Tb0.8Sr0.2FeO3, Gd0.6Sr0.4RuO3, SrCe0.95Y0.05O3, and Mn0.6Co0.4SnO3 were synthesized by tartrate and hydroxide precursor method. The resulting samples were characterized by inductively coupled plasma spectroscopy, energy dispersive X-ray analysis, infrared spectroscopy, thermal analysis, X-ray powder diffraction, transmission electron microscope (TEM), selected field of electron diffraction (SAED), d.c. electrical conductivity, Hall effect, dielectric measurements, and low-temperature magnetization measurements. The X-ray diffraction pattern for all compounds was indicated the formation of single-phase perovskite with orthorhombic structure except Tb0.8Sr0.2FeO3 and Mn0.6Co0.4SnO3 perovskite. These compounds showed a cubic and rhombohedral structure, respectively. The lattice parameter and the unit cell volume slightly decreased as ionic radii decrease in agreement with the lanthanide contraction. The average size of cation ˂ RA ˃, mismatch factor (σ2), and tolerance factor (t) gives the combined effects of disorder and inhomogeneity in these compounds. The average particle size determined from TEM was in the range of 22 to 77 nm for all compounds. The temperature dependence of electrical conductivity for all compounds showed a definite break in 500 K to 610 K. except the Gd0.6Sr0.4RuO3 compound, which corresponds to semiconducting behavior. While the Gd0.6Sr0.4RuO3 sample shows a metallic-like semiconductor. The thermoelectric power and Hall effect measurements for all compounds were n-type semiconductivity except the SrCe0.95Y0.05O3 compound. It showed p-type semiconductivity. The frequency dependence of the dielectric constant and dielectric loss in these substituted perovskites were discussed using the Maxwell-Wagner model. Magnetic studies showed that the thermo-magnetic irreversibility for all compounds.

References

L. Zhang, J. Hu, P. Song. H. Qin, K. An, X. Wang and M. Jiang. Sens, Actuators B 119, 315 (2006), https://doi.org/10.1016/j.snb.2005.12.030.

J. Zosel, D. Franke, K. Ahiborn, F. Gerlach, V. Vashook and U. Guth, Solid State Ionics 179, 1628 (2008), https://doi.org/10.1016/j.ssi.2008.01.044.

C. R. Michel, E. Delgada, G. Santillan, A. H. Martynez and A. Chavez - Chavez, Mat. Res. Bull. 42, 84 (2007), https://doi.org/10.1016/j.materresbull.2006.05.008.

M.D. Gross, K.M. Carver, M.A. Deighan, A. Schenkel, B. M. Smith and A.Z. Yee, J. Electrochem. Soc. 156(4), 540 (2009), https://doi.org/10.1149/1.3078406.

T. Kolodiazhnyi and A. Petric, J. Electroceram. 15, 5 (2005), https://doi.org/10.1007/s10832-005-0375-7.

P. Colomban, Proton Conductors: Solids, Membranes and, Gels - Materials and Devices (Cambridge University Press, Cambridge, 1992), ISBN 0-521-38317-X.

K.D. Kreuer, Chem. Mater. 8, 610 (1996), https://doi.org/10.1021/cm950192a.

V.N. Stathopoulos, V.C. Blessi, and A.K. Ladavos, React. Kinet. Catal. Lett. 72(1), 49 (2001), https://doi.org/10.1023/A:1010524312637.

J.R. Mawdsley and T.R. Krause, Appl. Catal. A 334, 311 (2008), https://doi.org/10.1016/j.apcata.2007.10.018.

J. Cerda, J. Arbiol and G. Dezanneau, Sens. Actuators B 84, 21 (2002), https://doi.org/10.1016/S0925-4005(02)00005-9.

A. Callaghan, C. W. Moeller and R. Ward, Inorg. Chem. 5, 1572 (1966), https://doi.org/10.1021/ic50043a023.

J. M. Longo, P. M. Raccah and J. B. Goodenough, J. Appl. Phys. 39, 1327 (1968), https://doi.org/10.1063/1.1656282.

H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio and B. Batl ogg, Phys. Rev. Lett. 75, 914 (1995), https://doi.org/10.1103/PhysRevLett.75.914.

Khagesh Tanwar, Farheen Anjum, Ashutosh K. Shukla, and Tanmoy Maiti, J. Appl. Phys.124, 094902 (2018), https://doi.org/10.1063/1.5027125.

Xiang Li, Chengliang Lu, Jiyan Dai, Shuai Dong, Yan Chen, Ni Hu, Guangheng Wu, Meifeng Liu, Zhibo Yan, and Jun-Ming Liu. Scientific Reports; https://doi.org/10.1038/srep07019.

G.H. Jonker and J.H. Vansanten, Physica 16, 337 (1950), https://doi.org/10.1016/0031-8914(50)90033-4.

P. Schiffer, A.P. Ramirez, W. Bao, and S. W. Cheong, Phys. Rev. Lett. 75, 3336 (1995), https://doi.org/10.1103/PhysRevLett.75.3336.

B. Raveau, A. Maignan and C. Martin, J. Solid State Chem. 130, 162 (1997), https://doi.org/10.1006/jssc.1997.7373.

M. Eibschutz, S. Shtrikman and D. Treves, Phys. Rev. 156, 562 (1967), https://doi.org/10.1103/PhysRev.156.562.

J.B. MacChesney, R.C. Sherwood and J.F. Potter, J. Chem. Phys. 43, 1907 (1965), https://doi.org/10.1063/1.1697052.

T. Takeda, K. Komura and H. Fujii, J. Magn. Magn. Mater 31, 797 (1983), https://doi.org/10.1016/0304-8853(83)90690-X.

Yiming Cao, Maolin Xiang, Weiyao Zhao, Guohua Wang, Zhenjie Feng, Baojuan, Kang, Alessandro Stroppa, Jincang Zhang, Wei Ren, and Shixun Cao J. Appl. Phys. 119, 063904 (2016), https://doi.org/10.1063/1.4941105.

R.J. Bouchard and J.L. Gillson, Mater. Res. Bull 7 (1972) 873, https://doi.org/10.1016/0025-5408(72)90075-X. R. J. Bouchard and J. F. Weiher, J. Solid State Chem. 4, 80 (1972), https://doi.org/10.1016/0022-4596(72)90135-1.

R. Greatrex, G. Hu and D.C. Munro, Mater, Res. Bull. 21, 797 (1986), https://doi.org/10.1016/0025-5408(86)90164-9.

J.M. Longo, P.M. Raccah and J.B. Goodenough, J. Appl. Phys. 39, 1327 (1968), https://doi.org/10.1063/1.1656282.

A. Callaghan, C.W. Moeller, and R. Ward, Inorg - Chem. 5, 1572 (1966), https://doi.org/10.1021/ic50043a023.

A. Labdelli, S. Meskine, A. Boukortt, and R. Khenata J. New Technol. Mater. 8, 126 (2018).

A. Kanbayashi, J. Phys. Soc. Japan 44, 108 (1978), https://doi.org/10.1143/JPSJ.44.108.

J. Guan, S.E. Dorris, U. Balachandran and M. Liu, Solid State ionics 100, 45 (1997), https://doi.org/10.1016/s0167-2738(97)00320-2.

U. Reiche, R.R. Arons and W. Schilling, Solid State Ionics 86-88, 639 (1996), https://doi.org/10.1016/0167-2738(96)00228-7.

T. Yajima, H. Kazeoka, T. Yogo, and J. Iwahara, Solid State Ionics 47, 271 (1991), https://doi.org/10.1016/0167-2738(91)90249-B.

K.S. Knight and N. Bonanos, Solid State Ionics 77, 189 (1995), https://doi.org/10.1016/0167-2738(94)00271-S.

M.J. Lopez-Robledo. C. Vaquero – Aguilar, J. Martinez - Fernandez, J. I. Pena, A. Sayir and M. Jimenez - Melendo, J. Eur. Ceram. Soc. 31, 1339 (2011), https://doi.org/10.1016/j.jeurceramsoc.2010.05.022.

Glenn C. Mather, Filipe M. Figueiredo, Julio Romero de Paz, and Susana Garcia – Martin Inorg. Chem. 47, 921 (2008), https://doi.org/10.1021/ic701703c.

G. Haacke, H. Ando and W.E. Mealmaker, Electrochem. Soc. 124, 1923 (1977), https://doi.org/10.1149/1.2133196.

K. Leinenweber, W. Utsumi, Y. Tsuchida, T. Yagi and K. Kurita Phys. Chem. Minerals 18, 224 (1991), https://doi.org/10.1007/BF00202576.

O. Parkash, K.D. Mandal, C.C. Christopher et al., J. Mater Sci. 31, 4705 (1996), https://doi.org/10.1007/BF00366373.

P.S. Bearmann, V. Thangadurai and W. Weppner, J. Solid State Chem. 174, 392 (2003), https://doi.org/10.1016/S0022-4596(03)00258-5.

Sung Gu Kang, J. Solid State Chem.; https://doi.org./10.1016/j.jssc.2018.03.026.

V.T. Dinh, V.O. Mittova and I.Ya, Mittova, Inorg. Mater. 47(5), 521 (2011), https://doi.org/10.1134/S0020168511050086.

A.K. Nikumbh, A.V. Nagawade, G.S. Gugale, M.G. Chaskar, and P.P. Bakare, J. Mater. Sci. 37, 637 (2002), https://doi.org/10.1023/A:1013790129045.

K.N. Akamoto, Infrared Spectra of Inorganic and Coordinated Compounds (Wiley– Interscience, New York, Second Edition, 1970).

J.A. Allan, N.D. Baird and A.L. Kassyk, J. Therm. Anal. 16, 79 (1979), https://doi.org/10.1007/BF01909635.

R.H. Nattal and G.A. Melson, J. Inorg. Nucl. Chem.25, 2979 (1969).

M. Khorasami - motlagh, M. Noroozifar, M. Yousefi and S. Jahani Int. J. Nanosci.Nanotechnol. 9(1), 7 (2013); (b) W. Cui, F. Wang, J. Wang and Y. Xia, Electrochimica Acta 56, 4812 (2011), https://doi.org/10.1016/j.electacta.2011.03.006.

JCPDS File No 250337.

JCPDS File No.400905.

JCPDS File No.010821469.

JCPDS File No.010831157.

JCPDS File No.010850864, (b) Y. Syono, H. Sawamoto and S. Akimoto, Solid State Communications 7, 713 (1969), https://doi.org/10.1016/0038-1098(69)90600-0.

L.M. Rodriguez-Martinez and J.P. Attfield, Phys.Rev B 54(22), R15622 (1996), https://doi.org/10.1103/PhysRevB.54.R15622.

Y. Tomioka and Y. Tokura, Phys.Rev. B 70, 14432 (2004), https://doi.org/10.1103/PhysRevB.70.014432.

R.D. Shanon, Acta Crystallogr. 32, 751.153 (1976), https://doi.org/10.1107/S0567739476001551.

X. Liu and C.T. Pewitt, J. Phys. Chem. Solids 52, 441 (1991), https://doi.org/10.1016/0022-3697(91)90097-J.

D. Louca, J.L. Sarrao, J.D. Thopson, H. Roeder and G.H. Kwei, Phys.Rev.B 60, 376 (1999), https://doi.org/10.1103/PhysRevB.60.10378.

L.M. Rodriguez-Martinez and J. P. Attfield, Phys.Rev. B 58, 2426 (1998), https://doi.org/10.1103/PhysRevB.58.2426.

D. Emin and T. Holstein, Ann. Phys. Spectros. 24, 436 (1970), https://doi.org/10.1016/0003-4916(69)90034-7.

J. Paul, Attfield. Chem. Mater. 10, 3239 (1998), https://doi.org/10.1021/cm980221s.

G. Geller, J. Chem.Phys .24, 1236 (1956), https://doi.org/10.1063/1.1742746.

J.C. Maxwell, Electricity and Magnetism vol. I (Oxford University Press England) 828 (1973); (b) K.W. Wangner, Am. phys 40, 817 (1973).

K.C. Verma, M. Ram, J. Singh and R.K. Kotnala, J. Alloy. Compd. 509, 4967 (2011), https://doi.org/10.1016/j.jallcom.2011.01.144.

C. Kaliyaperumal, S. Jayabalan, A. Sankarakumar and T. Paramasivam, Solid State Sci. 105, 106245 (2020), https://doi.org/10.1016/j.solidstatesciences.2020.106245.

C.G. Koops, Phys. Rev. 83, 121 (1951), https://doi.org/10.1103/PhysRev.83.121.

G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S.Di Carolis, M.R. Beasley and T.H. Geballe, Phys.Rev.B 55, 6453 (1997), https://doi.org/10.1103/PhysRevB.55.6453.

D.A. Filippov, K.V. Klimov, R.Z. Levitin, A.N. Vasilev, T.N. Voloshok and R. Suryanarayanan, J. Phys. Condens. Matter 15, 8351 (2003), https://doi.org/10.1088/0953-8984/15/49/013.

T.L. Phan, S.C. Yu, N.V. Khiem, M.H. Phan, J.R. Rhee, N.X. Phuc. J. Appl. Phys. 97, 10A508 (2005), https://doi.org/10.1063/1.1855197.

Z. Sun, H. Zhang, J. Wang and B. Shen, J. Appl. Phys. 86, 5152 (1999), https://doi.org/10.1063/1.371492.

S.K. Park, T. Ishikawa, Y. Tokura, J.Q. Li and Y. Matsui, Phys.Rev .B 60, 10788 (1999), https://doi.org/10.1103/PhysRevB.60.10788.

J.M.D. Coey, M. Venkatesan and C.B. Fitzgerald, Nat. Mater.4, 173 (2005), https://doi.org/10.1038/nmat1310.

J.R. McBride, K.C. Hass, B.D. Poindexter and W.H. Weber, J. Appl. Phys. 76, 2435 (1994), https://doi.org/10.1063/1.357593.

Downloads

Published

2021-11-19

How to Cite

Khanvilkar, M., Nikumbh, A., Pawar, R., Karale, N., Nighot, D., Ambare, R. ., … Misal, S. (2021). Preparation and Characterization of Nanosized Substituted Perovskite Compounds with Orthorhombic Structure. Physics and Chemistry of Solid State, 22(4), 664–686. https://doi.org/10.15330/pcss.22.4.664-686

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)