Impurity photoionization cross-section and intersubband optical absorption coefficient in multilayer spherical quantum dots

Authors

  • Volodymyr Holovatsky Yuriy Fedkovych Chernivtsi National University
  • Maryna Chubrei Yuriy Fedjkovych Chernivtsy National University
  • Oxana Yurchenko Lesya Ukrainka Volyn National University

DOI:

https://doi.org/10.15330/pcss.22.4.630-637

Keywords:

multilayer quantum dot, donor impurity, impurity photoionization cross section, impurity binding energy, optical absorption coefficient

Abstract

Energy spectrum, wave functions and binding energies of the electron to the donor impurity ion located in the center of a multilayer spherical quantum dot (MSQD) consisting of a core and two spherical shells were studied within the effective mass approximation. Based on the exact wave functions of the electron expressed in terms of Coulomb functions of the first and second kind, the spectral dependences of the photoionization cross section of the impurity (PCS) and the intersubband optical absorption coefficient (OAC) for various geometric dimensions of the nanostructure were calculated. 
It is shown that the decrease in the width of the external potential well changes the localization of the electron in the nanosystem which significantly affects the binding energy of the electron with the impurity, photoionization cross section and interband absorption coefficient. The position of the PCS peak associated with the quantum transition of an electron from the ground state to the 1p0 state shifts to the region of higher energies, and its height decreases. At the same time, the height of PCS peaks associated with quantum transitions to higher excited states (2p0, 3p0) increases.
The presence of impurities and changes in the MSQD size significantly affect the intersubband absorption coefficient. Decrease of the external potential well width in the absence of impurities leads to a monotonous increase in OAC through the first excited state, and in the presence of a central impurity, absorption through states with higher energy increases.

References

Z. Zhang, Chem. Mater 27, 1405 (2015); https://doi.org/10.1021/cm5047269.

G.Yu. Rudko, V.I. Fediv, I. Davydenko, E.G. Gule, O. Olar, A.O. Kovalchuk, Nanoscale Research Letters 11, 83 (2016); https://doi.org/10.1186/s11671-016-1300-5.

K. Chatterjee, S. Sarkar, R. K. Jagajjanani, S. Paria, Adv Colloid Interf Sci. 209(7), 8 (2014); https://doi.org/10.1016/j.cis.2013.12.008.

S. Lahon, P. K. Jha, M. Mohan, Journal of Applied Physics 109, 5 (2011); https://doi.org/10.1063/1.3559271.

S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, ACS Nano 9(1), 908 (2015); https://doi.org/10.1021/nn506638n.

J.-H. Yuan, W.-F. Xie, L.-L. He, Commun. Theor. Phys. 52(4), 710 (2009); https://doi.org/10.1088/0253-6102/52/4/306102/52/4/30.

W. Xie, Physica B 405(16), 3436 (2010); https://doi.org/10.1016/j.physb.2010.05.019.

E. Sadeghi, Superlattice Microstructures 50(4), 331 (2011); https://doi.org/10.1016/j.spmi.2011.07.011.

C. Dane, H. Akbas, A. Guleroglu, S. Minez, and K. Kasapoglu, Physica E 44(1), 186 (2011); https://doi.org/10.1016/j.physe.2011.08.012.

L.M. Burileanu, J. Luminescence 145, 684 (2014); https://doi.org/10.1016/j.jlumin.2013.08.043).

Corella Madueno, R. Rosas, J.L. Marın, R. Riera, J. Appl. Phys. 90(5), 2333 (2001); https://doi.org/10.1063/1.1329143.

E. Feddi, A. Talbi, M.E. Mora-Ramos, M.El. Haouari, F. Dujardin, and C.A. Duque, Physica B 524(11), 64 (2017); https://doi.org/10.1016/j.physb.2017.08.057.

M.G. Barseghyan, A.A. Kirakosyan, and C.A. Duque, Eur. Phys. J. B 72(11), 521 (2009); https://doi.org/10.1140/epjb/e2009-00391-0.

S. Li, L. Shi, and Z.-W. Yan, Mod. Phys. Lett. B 34, 2050153 (2020); https://doi.org/10.1142/s0217984920501535.

V.A.Holovatsky, I.B. Frankiv, Journal of Optoelectronics and Advanced Materials 15(1-2), 88 (2013).

F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Applied Surface Science 256(12), 3832 (2010); https://doi.org/10.1016/j.apsusc.2010.01.036.

I. Karabulut, S. Baskoutas, Journal of Applied Physics 103(7), 1 (2008); https://doi.org/10.1063/1.2904860.

Z. Zeng, C.S. Garoufalis, S. Baskoutas, A.F. Terzis, Physics Letters, Section A: General, Atomic and Solid State Physics 376 (42-43), 2712 (2012); https://doi.org/10.1016/j.physleta.2012.07.032.

Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, Journal of Applied Physics 114(2), 023510 (2013); https://doi.org/10.1063/1.4813094.

M. Cristea, E.C. Niculescua, European Phys. J. B, 85(6), 191 (2012); https://doi.org/10.1140/epjb/e2012-21051-2.

E.C. Niculescu, C. Stan, M. Cristea, C. Truscă, Chemical Physics, 493, 32 (2017); https://doi.org/10.1016/j.chemphys.2017.06.004.

M. Cristea, Physica E: Low-Dimensional Systems and Nanostructures 103, 300 (2018); https://doi.org/10.1016/j.physe.2018.06.019.

C.Heyn, C.A. Duque, Scientific Reports 10(1), 1 (2020); https://doi.org/10.1038/s41598-020-65862-9.

B. Çakir, U. Atav, Y. Yakar, A. Özmen, Chem. Phys. 475, 61 (2016); https://doi.org/10.1016/j.chemphys.2016.06.010.

D.-M. Liu, W.-F. Xie, Commun. Theor. Phys. 51(5), 919 (2009); https://doi.org/10.1088/0253-6102/51/5/32.

E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, and C.A. Duque, Physica E 119, 114011 (2020); https://doi.org/10.1016/j.physe.2020.114011.

E.B. Al, E. Kasapoglu, H. Sari, I. Sökmen, Physica B: Condensed Matter 613, 412874 (2021); https://doi.org/10.1016/j.physb.2021.412874.

V.I. Boichuk, I.V. Bilynskyi, R.Y. Leshko, and L.M. Turyanska, Physica E 44(2), 476 (2011); https://doi.org/10.1016/j.physe.2011.09.025.

V.A. Holovatsky, M.Y. Yakhnevych, and O.M. Voitsekhivska, Condens. Matter Phys. 21, 13703 (2018); https://doi.org/10.5488/CMP.21.13703.

V.A. Holovatsky, I.B. Bernik, and M.Y. Yakhnevych, Physica B 508, 112 (2017); https://doi.org/10.1016/j.physb.2016.12.024.

V.A. Holovatsky, O.M. Voitsekhivska, and M.Y. Yakhnevych, Superlattices and Microstructures 116, 9 (2018); https://doi.org/10.1016/j.spmi.2018.02.006.

V. Holovatsky, M. Chubrey, and O. Voitsekhivska, Superlattices and Microstructures 145, 106642 (2020); https://doi.org/10.1016/j.spmi.2018.02.006.

A.S. Baimuratov, I.D. Rukhlenko, V.K. Turkov, I.O. Ponomareva, M.Y. Leonov, T.S. Perova, K. Berwick, A.V. Baranov, A.V. Fedorov, Scientific Reports, 4, 1 (2014); https://doi.org/10.1038/srep06917.

V.I. Boichuk, I.V. Bilynskyi, R.Y. Leshko, Condensed Matter Physics 13(1), 13702 (2010); https://doi.org/https://doi.org/10.5488/CMP.13.13702.

Y. Naimi, A.R. Jafari, Journal of Computational Electronics 11(4), 414 (2012); https://doi.org/https://doi.org/10.1007/s10825-012-0421-z.

R. Kostić, D. Stojanović, Journal of Nanophotonics 6(1), 061606 (2012); https://doi.org/https://doi.org/10.1117/1.jnp.6.061606.

I.F.I. Mikhail, S.B.A. El Sayed, Physica E: Low-Dimensional Systems and Nanostructures 43(7), 1371 (2011); https://doi.org/10.1016/j.physe.2011.03.007.

F. Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad, Optical and Quantum Electronics 53, 47 (2021); https://doi.org/10.1007/s11082-020-02695-w.

V. Holovatsky, I. Bernik, O. Voitsekhivska, Acta Phys. Pol. A, 125, 1 (2014); https://doi.org/10.12693/APhysPolA.125.93.

V.A. Holovatsky, O.M. Voitsekhivska, M.Y. Yakhnevych, Physica E: Low-Dimensional Systems and Nanostructures 93, 295 (2017); https://doi.org/10.1016/j.physe.2017.06.019.

V. Holovatsky, I. Bernik, M. Yakhnevych, Physica E: Low-Dimensional Systems and Nanostructures, 83 (2016); https://doi.org/10.1016/j.physe.2016.04.035.

M.V. Chubrey, V.A. Holovatsky, C.A. Duque, Philosophical Magazine, (in press) (2021); https://doi.org/10.1080/14786435.2021.1979267.

Published

2021-11-10

How to Cite

Holovatsky, V., Chubrei, M., & Yurchenko, O. (2021). Impurity photoionization cross-section and intersubband optical absorption coefficient in multilayer spherical quantum dots. Physics and Chemistry of Solid State, 22(4), 630–637. https://doi.org/10.15330/pcss.22.4.630-637

Issue

Section

Scientific articles (Physics)