Investigating the Electronic and Optical Characteristics of New Nanocomposites for Flexible Optoelectronics Nanodevices

Array

Authors

  • Huda Bukheet Hassan University of Babylon, Iraq
  • Hayder M. Abduljalil University of Babylon, Iraq
  • Ahmed Hashim University of Babylon, Iraq

DOI:

https://doi.org/10.15330/pcss.23.3.454-460

Keywords:

electronic devices, optical properties, PEO, energy gap, CuO

Abstract

This work aims to design of PEO/CuO new structures and investigating optical, and electronic characteristics to use in various electronic and optoelectronics devices like diodes, transistors, photovoltaic cell, electronic gates, sensors and other electronics devices. Using the B3LYP-DFT with a suitable 6-31G basis set for pure PEO and SDD basis set for nanocomposite, a good optimization structure for the predicted nanocomposites was obtained. Geometrical values that have been calculated. The results indicated that the studied nanocomposite need small energy to become cationdue to ionization potential is decrease with addition nanoparticle to the pure PEO, but the electronic affinity is an increase with addition nanoparticles to the pure PEO. When compared to other nanocomposite, the total ground state energy of PEO has the highest value of total energy, but ET dropped with the addition of nanoparticles to pure PEO. With the addition of nanoparticles to pure PEO, the hardness decreases, making nanocomposite softer, lowering a species' barrier to losing electrons. The studied nonocomposite direct electronic transition from the valence to conduction band with wave length falls within the solar spectrum range. The results revealed that the (PEO-CuO) nanocomposite has a wide range of applications in the fields of electronics and photo-electronics.

References

L.H. Madkour, Introduction to nanotechnology (NT) and nanomaterials (NMs). In Nanoelectronic Materials, Springer, Cham, 1-47 (2019); https://doi.org/10.1007/978-3-030-21621-4_1.‏

M. Tyagi, D. Tyagi, Polymer nanocomposites and their applications in electronics industry. International Journal of Electronic and Electrical Engineering 7(6), 603-608 (2014).‏

M.M. Abutalib, A. Rajeh, Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications, Polymer Testing, 93, 107013 (2021); https://doi.org/10.1016/j.polymertesting.2020.107013.

M.M. Abutalib, A. Rajeh, Journal of Organometallic Chemistry, 920, 121348 (2020); https://doi.org/10.1016/j.jorganchem.2020.121348.‏

M. A. Morsi, A. Rajeh, A. A. Al-Muntaser, Composites Part B: Engineering 173, 106957(2019); https://doi.org/10.1016/j.compositesb.2019.106957.‏

Ahmed Hashim, Yahya Al-Khafaji, Aseel Hadi, Transactions on Electrical and Electronic Materials 20, 530–536 (2019); https://doi.org/10.1007/s42341-019-00145-3.

C.J. Cramer, Computational Chemistry: Theories and Models (2004).

D.D. Fitts, Principles of quantum mechanics: as applied to chemistry and chemical physics. Cambridge University Press (1999).

P.A. Cox, Introduction to quantum theory and atomic structure. New York: Oxford University Press (1996).

D. W. Rogers, Computational Chemistry using the PC. John Wiley & Son, (2003).‏

S. M. Valone, Quantal Density Functional Theory II. Approximation Methods and Applications, (2010); https://doi.org/10.1021/ja105861z.‏

N. Ira Levin. Quantum Chemistry, 6th edn. (Pearson Education Inc, Upper Saddle River ( 2009).

M.O. Sinnokrot, E.F. Valeev, C.D. Sherrill, Journal of the American Chemical Society 124, 36, 10887-10893 (2002); https://doi.org/10.1021/ja025896h.

Chabinyc, X. Chen, R. E. Holmlin, H. Jacobs, H. Skulason, C. D. Frisbie, ... & M. A. Ratner, MA Rampi and GM. Whitesides J. Am. Chem. Soc., 124(39), 11730-11736 (2002); https://doi.org/10.1021/ja020506c.

Koch, M.C. Holthausen. Achemist’s guide to functional theory, 2nd edn. (Wiley, Berlin) (2001).

F. Jensen, Introduction to computational chemistry. John Wiley& Sons (2017).‏

G.G. Hall, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 205,1083, 541-552 (1951); https://doi.org/10.1098/rspa.1951.0048.

J.R. Reimers, Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology. John Wiley & Sons, (2011);

B. Kenny Lipkowitz, R. Larter, R. Thomas Cundari, D.B. Boyd. Reviews in Computational Chemistry, Wiley, Hoboken, (2005) 93 (2000).

W. Thiel, Semiempirical methods. Modern methods and algorithms of quantum chemistry, 261-283 (2000).

Hind Ahmed, Ahmed Hashim, Silicon, 13, 2639–2644 (2020); https://doi.org/10.1007/s12633-020-00620-0.

A. Hashim, H.M. Abduljalil, H. Ahmed, Egypt. J. Chem., 62, 9 (2019); https://doi.org/10.21608/EJCHEM.2019.7154.1590.

Angham Hazim, Hayder M. Abduljalil, Ahmed Hashim, Transactions on Electrical and Electronic Materials 21, 550–563 (2020); https://doi.org/10.1007/s42341-020-00210-2.

Hind Ahmed and Ahmed Hashim, Transactions on Electrical and Electronic Materials 22, 335–345 (2021); https://doi.org/10.1007/s42341-020-00244-6.

P.T. Matthews. Introduction to Quantum Mechanics, McGrewHill, New York (1974).

W.J. Hehre, L. Radom, P.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986).

M.P. Mueller, Fundamentals of quantum chemistry: molecular spectroscopy and modern electronic structure computations, Springer Science & Business Media, (2007).

A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Ukr. J. Phys. 64, 2(2019); https://doi.org/10.15407/ujpe64.2.157.

H. Dorsett, A.White, Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials. Defence Science And Technology Organization Salisbury (Australia) (2000).

G. Montambaux, F. Piéchon, J. N. Fuchs, M. O. Goerbig, Merging of Dirac points in a two-dimensional crystal. Physical Review B 80(15), 153412 (2009); https://doi.org/10.1103/PhysRevB.80.153412.

L. Pauling, “The Nature of the Chemical Bond—An Introduction to Modern Structural Chemistry”. 3rd Edition, Cornell University Press, Ithaca, New York, 10-13 (1960).

B. Soren, T. Morten..Electronic and optical properties of graphene and graphene antidote structures, Master Thesis, University of Aalborg, (2013).

A. Hazim, H. M. Abduljalil, A. Hashim, Trans. Electr. Electron. Mater. 21, 48–67 (2020); https://doi.org/10.1007/s42341-019-00148-0.

M. Vanin, Electronic and chemical properties of graphene-based structures: A density functional theory study. Kgs. Lyngby, Ph.D. THESIS, Denmark: Technical University of Denmark (DTU), (2011).‏

H. Ahmed, A. Hashim, Silicon, 14, 4907–4914 (2022); https://doi.org/10.1007/s12633-021-01258-2.

N.K. Pham, N.H. Vu, V. Van Pham, H.K.T. Ta, T.M. Cao, N. Thoai, V.C. Tran, J Mater Chem C 6(8), 1971–1979 (2018); https://doi.org/10.1039/C7TC05140A.

M.Yu, C.S. Jayanthi, S.Y. Wu, Bonding nature, structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes. arXiv preprint: 0901.3567 (2009); https://doi.org/10.48550/arXiv.0901.3567

P.D. Dietzel, R.E. Johnsen, H. Fjellvåg, S. Bordiga, E. Groppo, S. Chavan, R. Blom, Chem. Commun. 41, 5125–5127 (2008); https://doi.org/10.1039/B810574J.

J.M. Ramos, M.T.D.M. Cruz, A.C. Costa Jr, O. Versiane, C.A.T. Soto, Science Asia 37, 247–255 (2011); https://doi.org/10.2306/scienceasia1513-1874.2011.37.247.

W.A. Prabowo, M.K. Agusta, S. Nugraha, A.H. Lubis, H.K. Dipojono, In Proceedings of the International MultiConference of Engineers and Computer Scientists 2, 13-15 (2013).

Ahmed Hashim, Zinah S. Hamad, Egypt. J. Chem. 63, 2 (2020); https://doi.org/10.21608/EJCHEM.2019.7264.1593.

A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials 31, 2483–2491 (2021); https://doi.org/10.1007/s10904-020-01846-6.

A. Hashim, J Mater Sci: Mater Electron 32, 2796–2804 (2021); https://doi.org/10.1007/s10854-020-05032-9.

A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials 30, 3894–3906 (2020); https://doi.org/10.1007/s10904-020-01528-3 .

L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Physics Reports 473 (5-6), 51-87 (2009); https://doi.org/10.1016/j.physrep.2009.02.003.‏

Angham Hazim, Hayder M. Abduljalil and Ahmed Hashim, International Journal of Emerging Trends in Engineering Research 7, 8 (2019); https://doi.org/10.30534/ijeter/2019/04782019.

A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Letters 8(3), 902-907 (2008); https://doi.org/10.1021/nl0731872.

D. Hassan, A. Hashim, Journal of Bionanoscience 12, 3 (2018); https://doi.org/10.1166/jbns.2018.1533 .

M. Aliofkhazraei, Advances in Graphene Science. BoD–Books on Demand (2013).

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat Photon 4, 611–622 (2010); https://doi.org/10.1038/nphoton .‏

Zhang, Q., Cao, F., Liu, W., Lukas, K., Yu, B., Chen, S., ... & Ren, Z. Journal of the American chemical society 134(24), 10031-10038 (2012); https://doi.org/10.1021/ja301245b.‏

H. Ishida, Zeitschrift Fur Naturforschung A, 55(9/10), 769-771 (2000).‏

D. Hassan, A. Hashim, Journal of Bionanoscience 12, 3 (2018); https://doi.org/10.1166/jbns.2018.1537.

A. Hazim, H. M. Abduljalil, A. Hashim, Trans. Electr. Electron. Mater. 22, 185–203 (2021); https://doi.org/10.1007/s42341-020-00224-w.

H. Ahmed, A. Hashim, J Mol Model 26, 210 (2020); https://doi.org/10.1007/s00894-020-04479-1.

H. Ahmed, A. Hashim, Silicon 13, 1509–1518 (2021); https://doi.org/10.1007/s12633-020-00543-w.

Downloads

Published

2022-08-20

How to Cite

Hassan, H. B., Abduljalil, H. M., & Hashim, A. (2022). Investigating the Electronic and Optical Characteristics of New Nanocomposites for Flexible Optoelectronics Nanodevices: Array. Physics and Chemistry of Solid State, 23(3), 454–460. https://doi.org/10.15330/pcss.23.3.454-460

Issue

Section

Scientific articles (Physics)