Strong correlation effects in vanadium oxide films
DOI:
https://doi.org/10.15330/pcss.23.1.62-66Keywords:
Metal-Insulator Transition, Strong Electron Correlations, Energy SpectrumAbstract
In the present work the metal-insulator transition in doubly orbitally degenerated model of quasi-two-
dimensional material based on V2O3 film, in which a crucial role is played by on-site Coulomb interaction and correlated hopping of electrons, has been investigated. With use of a projection procedure in the Green function method the energy spectrum of electrons has been calculated to model variations of the material properties at the temperature changes, the external pressure application and doping. The obtained expressions for thermodynamic potential and the energy gap widths allow analyzing the possible phase transitions in a system, the dependency of characteristics on the external actions for this strongly correlated material.
References
P.A. Metcalf et al, Thin Solid Films 515(7-8), 3421 (2007); https://doi.org/10.1016/j.tsf.2006.10.003.
D.B. McWhan, J.P. Remeika, Phys. Rev. B 2, 3734 (1970); https://doi.org/10.1103/PhysRevB.2.3734.
J.B. Goodenough, Annu. Rev. Mater. Sci. 1, 101 (1971); https://doi.org/10.1146/annurev.ms.01.080171.000533.
W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 4302 (1970); https://doi.org/10.1103/PhysRevB.2.4302.
C. Castellani et al, Phys. Rev. B 18, 4945 (1978); https://doi.org/10.1103/PhysRevB.18.4945.
N.F. Mott, Metal-insulator transition (Pergamon Press Ltd, 1979).
M.J. Rozenberg et al, Phys. Rev. Lett. 75, 105 (1995); https://doi.org/10.1103/PhysRevLett.75.105.
G. A. Thomas et al, Phys. Rev. Lett. 73, 1529 (1994); https://doi.org/10.1103/PhysRevLett.73.1529.
H. Kuwamoto, J. M. Honig, J. Appel. Phys. Rev. B 22, 2626 (1980); https://doi.org/10.1103/PhysRevB.22.2626.
K.E. Smith, V.E. Henrich, Phys. Rev. B 50, 1382 (1994); https://doi.org/10.1103/PhysRevB.50.1382.
J.-H. Park et al, Phys. Rev. B 61, 11506 (2000); https://doi.org/10.1103/PhysRevB.61.11506.
K. Held et al, Phys. Rev. Lett. 86, 5345 (2001); https://doi.org/10.1103/PhysRevLett.86.5345.
[S. Lupi et al, Nat Commun 1, 105 (2010); https://doi.org/10.1038/ncomms1109.
J.G. Ramirez et al, Phys. Rev. B 91, 205123 (2015); https://doi.org/10.1103/PhysRevB.91.205123.
Hyun-Tak Kim et al, Phys. Rev. Lett. 97, 266401 (2006); https://doi.org/10.1103/PhysRevLett.97.266401.
G. Mazza, A. Amaricci, M. Capone, M. Fabrizio, Phys. Rev. Lett. 117, 176401 (2016); https://doi.org/10.1103/PhysRevLett.117.176401.
P. Homm et al, APL Materials. 9, 021116 (2021); https://doi.org/10.1063/5.0035865.
L. Didukh, V. Hankevych, O. Kramar, Yu. Skorenkyy, J. Phys.: Condens. Matter, 14(4), 827 (2002); https://doi.org/10.1088/0953-8984/14/4/315.
Yu. Skorenkyy, O. Kramar, Yu. Dovhopyaty, Condens. Matter Phys. 23, 43714 (2020); https://doi.org/10.5488/CMP.23.43714.
L. Didukh, Yu. Skorenkyy, O. Kramar, Condens. Matter Phys. 11(3), 443 (2008); https://doi.org/10.5488/CMP.11.3.443.
Yu. Skorenkyy, O. Kramar, Mol. Cryst. Liq. Cryst. 639(1), 24 (2016) https://doi.org/10.1080/15421406.2016.1254507.
Yu. Skorenkyy, O. Kramar, Condens. Matter Phys. 9(1), 61 (2006); https://doi.org/10.5488/CMP.9.1.161.
L. Didukh, O. Kramar, Fizika Nizkikh Temperatur (Kharkov), 28(1), 42 (2002); https://doi.org/10.1063/1.1449182.
G. Keller et al, Phys. Rev. B 70, 205116 (2004); https://doi.org/10.1103/PhysRevB.70.205116.