A comparative density functional theory study of BMSF-BENZ chemisorption on Zn12O12, Al12P12 nanocages
DOI:
https://doi.org/10.15330/pcss.23.1.120-133Keywords:
Drug adsorption, BMSF-BENZ, nanocages, Drug delivery system, Density functional theory, Thermodynamic propertiesAbstract
In this paper, density functional theory (DFT) study was applied to the absorption of
BMSF-BENZ ((4-bromo-7-methoxy-1-(2-methoxyethyl)-5-{[3 (methylsulfonyl)phenyl]methyl)}-2-[4-(propane-2)) yl)phenyl]-1H-1,3-benzothiazole) used for the treatment of Osteoporosis, on the surfaces of two types of nanocages Zn12O12 and Al12P12. The results showed that the interaction of BMSF-BENZ with the nanocages was highly exothermic, indicating the high chemical adsorption of the new complexes. The adsorption energies of the ZnO nanocage were higher than those of AlP for all the active atoms investigated on the drug compound (Br, N8, N9, N58, O35, O42, and S).
Topology analyses such as QTAIM and NCI/RDG indicate that the interactions between the BMSF-BENZ drug and the surface of the ZnO nanocage are more substantial than that of the AlP nanocage. The obtained results of charge, the total density of states (TDOS), and boundary molecular orbital analysis confirm a characteristic orbital hybridization upon adsorption of BMSF-BENZ, indicating the potential application of AlP as a biochemical adsorbent for BMSF-BENZ. However, ZnO nanocage is a candidate for drug delivery applications.
References
J.A. Kanis, C. Cooper, R. Rizzoli, & J.Y. Reginster, Osteoporosis International 30(1), 3 (2019); https://doi.org/10.1007/s00198-018-4704-5); 31(1), 209 (2020); https://doi.org/10.1007/s00198-019-05184-3.
S.P. Tuck, R.M. Francis, Osteoporosis. Postgraduate Medical Journal 78(923), 526 (2002); https://doi.org/10.1136/pmj.78.923.526.
C. Deal, Nature Clinical Practice Rheumatology 5(1), 20 (2009); https://doi.org/10.1038/ncprheum0977.
Ahmed Hassen Shntaif, Z.M. Rashid, Z.H., Al-Sawaff, & F. Kandemirli, Russian Journal of Bioorganic Chemistry 47(3), 777 (2021); https://doi.org/10.1134/S106816202103016X.
P.D. Dwivedi, A. Tripathi, K.M. Ansari, R. Shanker, & M. Das, Journal of Biomedical Nanotechnology, 7(1), 193 (2011); https://doi.org/10.1166/jbn.2011.1264.
X. Lv, P. Wang, R. Bai, Y. Cong, S. Suo, X. Ren, & C. Chen, Biomaterials 35(13), 4195 (2014); https://doi.org/10.1016/j.biomaterials.2014.01.054.
Q. Yu, J. Li, Y. Zhang, Y. Wang, L. Liu, & M. Li, Scientific Reports 6 (May), 26667 (2016); https://doi.org/10.1038/srep26667.
A.F. Halbus, T.S. Horozov, & V.N. Paunov, ACS Applied Materials and Interfaces 11(42), 38519 (2019); https://doi.org/10.1021/acsami.9b14403.
S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, … K. Ayub, ACS Omega 5(13), 7641 (2020); https://doi.org/10.1021/acsomega.0c00507.
A.L. Silva, L.I.F. Moura, B. Carreira, J. Conniot, A.I. Matos, C. Peres, … H.F. Florindo, Functional Moieties for Intracellular Traffic of Nanomaterials. Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation. Elsevier Inc. (2018); https://doi.org/10.1016/B978-0-323-50878-0.00014-8.
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, H.S. Shin, Journal of Nanobiotechnology 16(1), 1 (2018); https://doi.org/10.1186/s12951-018-0392-8.
S.S. Suri, H. Fenniri, & B. Singh, Journal of Occupational Medicine and Toxicology 2(1), 1 (2007); https://doi.org/10.1186/1745-6673-2-16.
A.P. Singh, A. Biswas, A. Shukla, & P. Maiti, Signal Transduction and Targeted Therapy 4(1), 1 (2019); https://doi.org/10.1038/s41392-019-0068-3.
D. Scarano, F. Cesano, S. Bertarione, & A. Zecchina, Crystals 8(4), (2018); https://doi.org/10.3390/cryst8040153.
K.S. Siddiqi, A. Tajuddin ur Rahman, & A. Husen, Nanoscale Research Letters 13, (2018); https://doi.org/10.1186/s11671-018-2532-3.
X. Zhang, W. Lan, J. Xu, Y. Luo, J. Pan, C. Liao, … X. Huang, Sensors and Actuators, B: Chemical 289, 144 (2019); https://doi.org/10.1016/j.snb.2019.03.090.
M.T. Baei, M.B. Tabar, & S. Hashemian, Adsorption Science and Technology 31(5), 469 (2013); https://doi.org/10.1260/0263-6174.31.5.469.
S. Khan, M.A. Gilani, S. Munsif, S. Muhammad, R. Ludwig, & K. Ayub, Journal of Molecular Graphics and Modelling 106 (April), 107935 (2021); https://doi.org/10.1016/j.jmgm.2021.107935.
H.R. Ghenaatian, M.T. Baei, & S. Hashemian, Superlattices and Microstructures 58, 198 (2013); https://doi.org/10.1016/j.spmi.2013.03.006.
J. Beheshtian, Z. Bagheri, M. Kamfiroozi, & A. Ahmadi, Journal of Molecular Modeling 18(6), 2653 (2012); https://doi.org/10.1007/s00894-011-1286-y.
A. Shokuhi Rad, & K. Ayub, Journal of Alloys and Compounds 672, 161 (2016); https://doi.org/10.1016/j.jallcom.2016.02.139.
E.F. Archibong, R.M. Gregorius, & S.A. Alexander, Chemical Physics Letters 321(3-4), 253 (2000); https://doi.org/10.1016/S0009-2614(00)00355-9.
A. Shokuhi Rad, S. Ghasemi Ateni, H.A., Tayebi, P. Valipour, & V. Pouralijan Foukolaei, Journal of Sulfur Chemistry 37(6), 622 (2016); https://doi.org/10.1080/17415993.2016.1170834.
A.S. Rad, Applied Surface Science 357(2), 1217 (2015); https://doi.org/10.1016/j.apsusc.2015.09.168.
M.T. Baei, M. Koohi, & M. Shariati, Journal of Molecular Structure 1159, 118 (2018); https://doi.org/10.1016/j.molstruc.2018.01.022.
J. Lv, C. Zhang, S. Wang, M. Li, & W. Guo, Analyst 146(2), 605 (2021); https://doi.org/10.1039/d0an01383h.
H. Wu, X. Fan, & J.L. Kuo, International Journal of Hydrogen Energy 37(19), 14336 (2012); https://doi.org/10.1016/j.ijhydene.2012.07.081.
M. Pandurangan, & D.H. Kim, Saudi Journal of Biological Sciences 22(6), 679 (2015). https://doi.org/10.1016/j.sjbs.2015.03.013.
J. Zhang, H. Lu, L. Zhang, D. Leng, Y. Zhang, W. Wang, … C. Wang, Sensors and Actuators, B: Chemical, 291(April), 458 (2019); https://doi.org/10.1016/j.snb.2019.04.058.
M.T. Baei, M.B. Tabar, & S. Hashemian, Adsorption Science and Technology 31(5), 469 (2013); https://doi.org/10.1260/0263-6174.31.5.469.
M. Ghorbanzadeh Ahangari, & A. Hamed Mashhadzadeh, International Journal of Hydrogen Energy 45(11), 6745 (2020); https://doi.org/10.1016/j.ijhydene.2019.12.106.
Z. Al-Sawaff, S. Dalgic Senturk, & F. Kandemirli, European Journal of Chemistry 12(3), 314 (2021); https://doi.org/10.5155/eurjchem.12.3.314-322.2143.
Merve Şenğül ALPATER, Zaid H. AL-SAWAFF, & Fatma KANDEMİRLİ. (2021). Theoretical study of gallium nitride nanocage as a carrier for Cisplatin anticancer drug. Global Journal of Engineering and Technology Advances, 9(3), 077–085. https://doi.org/10.30574/gjeta.2021.9.3.0166.
R. Ahmadi, & M. Ebrahimikia, Physical Chemistry Research 5(4), 617 (2017); https://doi.org/10.22036/pcr.2017.70859.1337.
P. Lakshmi Praveen, & D.P. Ojha, Phase Transitions 87(5), 515 (2014); https://doi.org/10.1080/01411594.2013.852195.
A. Maleki, Structural Chemistry (0123456789), (2021); https://doi.org/10.1007/s11224-021-01842-7.
P.L. Praveen, & D.P. Ojha, Journal of Molecular Liquids 194, 8 (2014); https://doi.org/10.1016/j.molliq.2014.01.002.
P.L. Praveen, D.S. Ramakrishna, & D.P. Ojha, Molecular Crystals and Liquid Crystals 643(1), 76 (2017); https://doi.org/10.1080/15421406.2016.1262702.
P.L. Praveen, & D.P. Ojha, Journal of Molecular Modeling 18(4), 1513 (2012); https://doi.org/10.1007/s00894-011-1171-8.
H. Farrokhpour, H. Jouypazadeh, & S. Vakili Sohroforouzani, Molecular Physics 118(4), 1 (2020); https://doi.org/10.1080/00268976.2019.1626506.
R.F.W. Bader, Atoms in molecules. Acc. Chem. Res 18, 9 (1985); https://doi.org/10.1021/ar00109a003.
T. Lu, & F. Chen, Journal of Computational Chemistry 33(5), 580 (2012); https://doi.org/10.1002/jcc.22885.
W. Thomas, C. Kelley, 1 gnuplot (2004).
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996).
Z. Al-sawaff, H. Sayıner, F. Kandemi̇rli̇, Retrieved from (2020). https://dergipark.org.tr/en/pub/jauist/issue/55760/739466.
J. Beheshtian, Z. Bagheri, M. Kamfiroozi, & A. Ahmadi, Journal of Molecular Modeling 18(6), 2653 (2012); https://doi.org/10.1007/s00894-011-1286-y.
H.S. Sayiner, F. Kandemirli, S. Senturk Dalgic, M. Monajjemi, F. Mollaamin, J. Mol. Model. 28,11 (2022).
https://doi.org/10.1007/s00894-021-04948-1
D. Cremer and E. Kraka, Angew. Chem., Int. Ed. Engl. 23, 627 (1984).
E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys. 117, 5529 (2002).
Abhishek Shahi and Elangannan Arunan, Phys. Chem. Chem. Phys, 16, 22935 (2014); https://doi:10.1039/c4cp02585g.
P. Sathishkumar, Z. Li, R. Govindan et al, Appl. Surf. Sci, 536, 147741 (2021); https://doi:10.1016/j.apsusc.2020.147741.
A.S. Rad, P. Valipour, A. Gholizade, & S.E. Mousavinezhad, Chemical Physics Letters 639, 29 (2015); https://doi.org/10.1016/j.cplett.2015.08.062.
L. Chen, W. Feng, J. Fan, K. Zhang, & Z. Gu, Science of the Total Environment 711, 135155 (2020); https://doi.org/10.1016/j.scitotenv.2019.135155.
A.S. Rad, & K. Ayub, Journal of Alloys and Compounds 678, 317 (2016); https://doi.org/10.1016/j.jallcom.2016.03.175.