First-principles study for physical properties and stability of Li based chalcopyrite semiconductors: Reliable for green energy sources

Array

Authors

  • J. Kumari Department of Physics, Banasthali Vidyapith, Rajasthan, India
  • C. Singh Department of Physics, Agra College, Agra, India
  • B.L. Choudhary Department of Physics, Banasthali Vidyapith, Rajasthan, India
  • A.S. Verma Division of Research & Innovation, Department of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India; University Centre for Research & Development, Department of Physics, Chandigarh University, Mohali, Punjab, India

DOI:

https://doi.org/10.15330/pcss.23.4.728-740

Keywords:

Chalcopyrites, Electronic properties, Optical properties, elastic properties

Abstract

In this research study, we have been performed the first principles calculation for physical properties likewise structural, electronic, optical and mechanical properties of the lithium gallium chalcopyrites LiGaX2 (X= S, Se). We have used two exchange correlation potentials one is full potential augmented plane wave method (FP-LAPW) and second is pseudo-potential method. The reported lattice parameters in this work ranging from a = b = 5.28 Å to 5.82 Å and c = 10.11 Å to 11.25 Å and found that these materials have direct band-gap 4.41 eV for LiGaS2 and 2.90 eV for LiGaSe. Refractive indexes n(ω) is 2.1 and 2.3 respectively for these compounds. The study of optical and elastic properties for these materials ensures that these show the anisotropic behaviour and ductile in nature.

References

S. Twaha, J. Zhu, Y. Yan, & B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renewable and Sustainable Energy Reviews, 65, 698 (2016); http://dx.doi.org/10.1016/j.rser.2016.07.034.

U. Rani, P. K. Kamlesh, R. Agarwal, J. Kumari, & A. S. Verma, Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I): A non-toxic and efficient energy storage materials, International J. Quantum Chemistry, 121, 19 (2021); https://doi: e26759 doi:10.1002/qua.26759.

M. S. Khan, T. Alshahrani, B. U. Haq, S. Khan, G. Alrobei, H.& M. Benaadad, Investigation of structural, electronic and optical properties of potassium and lithium based ternary Selenoindate: Using first principles approach, J. Solid-State Chemistry, 293, 121778 (2021); https://doi: 10.1016/j.jssc.2020.121778.

M. Ye, R. Tang, S. Ma, Q. Tao, X. Wang, Y. Li, & P. Zhu, Electrical Transport Properties and Band Structure of CuInSe2 under High Pressure, J. Physical Chemistry, 123, 20757 (2019); https://doi.org/10.1021/acs.jpcc.9b05499.

L. Yu, A. Zunger, Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials, Phys. Rev. Lett, 108, 068701 (2012); https://doi: 10.1103/PhysRevLett.108.068701.

H. Xiao, J. Tahir-Kheli, W.A. Goddar, Accurate band gaps for semiconductors from density functional theory, J. Phys. Chem. Lett, 2, 212 (2011); https://doi.org/10.1021/jz101565j.

Y. Li, Y. Liu, J. Chen, C. Zhao, & W. Cui, Comparison study of crystal and electronic structures for chalcopyrite (CuFeS2) and pyrite (FeS2), Physicochemical Problems of Mineral Processing, 57, (2021); https://doi: 10.37190/ppmp/129572.

M. S. Omar, Lattice thermal expansion for normal tetrahedral compound semiconductors, Materials research bulletin, 42, 319 (2007); https://doi: 10.1016/j.materresbull.2006.05.031.

S. Sharma, A. S. Verma, R. Bhandari, & V. K. Jindal, Ab initio studies of structural, elastic and thermal properties of copper indium dichalcogenides (CuInX2: X= S, Se, Te), Computational materials science, 86, 108 (2014); http://dx.doi.org/10.1016/j.commatsci.2014.01.021.

T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi and S.Y. Amanaka, Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material, Advanced Materials, 24, 3622 (2012); https://doi: 10.1002/adma.201200732.

P. Ranjan, P. Kumar, P. K. Surolia, & T. Chakraborty, Structure, electronic and optical properties of chalcopyrite semiconductor AgTiX2 (X= S, Se, Te): A density functional theory study, Thin Solid Films, 717, 138469 (2021); https://doi.org/10.1016/j.tsf.2020.138469.

M. Mukherjee, G. Yumnam, A. K. Singh, High Thermoelectric Figure of Merit via Tunable Valley Convergence Coupled Low Thermal Conductivity in AIIBIVC2V Chalcopyrites, J. Phys. Chem, 122, 29150 (2018); https://doi.org/10.1021/acs.jpcc.8b10564.

A. Nomura, S. Choi, M. Ishimaru, A. Kosuga, T. Chasapis, S. Ohno, G. J. Snyder, Y. Ohishi, H. Muta, S. Yamanaka, K. Kurosaki, Chalcopyrite ZnSnSb2: A Promising Thermoelectric Material, ACS Appl. Mater. Interfaces, 10, 43682 (2018); https://doi.org/10.1021/acsami.8b16717.

H. Liu, B. Zhao, Y. Yu, Z. He, J. Xiao, W. Huang, S. Zhu, B. Chen, L. Xie, Theoretical investigations on elastic, thermal and lattice dynamic properties of chalcopyrite ZnSnX2 (X = P, As, Sb) under pressure and temperature: The first-principles calculation, Int. J. Mod. Phys, 32, 1850329 (2018); https://doi.org/10.1142/S0217979218503290.

J. Liu, Y. Zhao, Z. Dai, J. Ni, & S. Meng, Low thermal conductivity and good thermoelectric performance in mercury chalcogenides, Computational Materials Science, 185, 109960 (2020); https://doi.org/10.1016/j.commatsci.2020.109960.

A. Sharan, F. P. Sabino, A. Janotti, N. Gaillard, T. Ogitsu, & J. B. Varley, Assessing the roles of Cu-and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations, J. Applied Physics, 127, 065303 (2020); https://doi.org/10.1063/1.5140736.

G. Regmi, Ashok, A. Chawla, P. Semalti, P. Velumani, S. Sharma, S. N. & H. Castaneda, Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review, J. Materials Science: Materials in Electronics, 31, 7286 (2020); https://doi.org/10.1007/s10854-020-03338-2.

Y. J. Lee, M. Brandbyge, J. Puska, J. Taylor, K. Stokbro, & R. M. Nieminen, Electron transport through monovalent atomic wires, Phys. Rev, 69, 125409 (2004); https://doi.org/10.1103/PhysRevB.69.125409.

K. Schwarz, DFT calculations of solids with LAPW and WIEN2k, J. Solid-State Chemistry, 176, 319 (2003); https://doi: 10.1016/S0022-4596(03)00213-5.

Atomistic Tool Kit – Virtual Nano Lab (ATK-VNL), Quantum Wise Simulator, Version. 2014.3, http://quantumwise.com/.

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L. D. Marks, Wien2k: An augmented plane wave plus local orbitals program for calculating crystal properties (revised edition), Vienna University of Technology, Austria. (2018)

E. Wimmer, H. Krakauer, M. Weinert, & A. J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2molecule, Phys. Rev. Letter, 24, 864 (1981); https://doi.org/10.1103/PhysRevB.24.864.

H. J. Monkhorst, & J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. Letter, 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Letter, 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

Z. Wu, & R. E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B, 73, 235116 (2006) https://doi.org/10.1103/PhysRevB.73.235116.

F. Tran, R. Laskowski, P. Blaha, & K. Schwarz, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional, Phys. Rev. B, 75, 115131 (2007); https://doi.org/10.1103/PhysRevB.75.115131.

W. Kohn, & L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, 140, A1133 (1965); https://doi.org/10.1103/PhysRev. 140.A1133.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Physical review letters, 100, 136406 (2008); https://doi.org/10.1103/PhysRevLett.100.136406.

F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Letter, 102, 226401 (2009 https://doi.org/10.1103/PhysRevLett.102.226401.

F. D. Murnaghan, Differential and integral calculus, Proc. Natl. Acad. Sci. USA, 30, 244 (1947) https://dx.doi.org/10.1073%2Fpnas.30.9.247.

F. Birch, Finite elastic strain of cubic crystals, Physical review, 71, 809 (1947); https://doi.org/10.1103/PhysRev.71.809.

F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA, 30, 244 (1944); https://dx.doi.org/10.1073%2Fpnas.30.9.244.

T. Lantri, S. Bentata, B. Bouadjemi, W. Benstaali, B. Bouhafs, A. Abbad and A. Zitouni, Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co2MnSi Heusler: A comparative study, J. Magnetism and Magnetic Materials, 419, 74 (2016); https://doi.org/10.1016/j.jmmm.2016.06.012.

S. Sharma, A. S. Verma and V. K. Jindal, Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X=S, Se, Te), Materials Research Bulletin, 53, 218 (2014); https://doi.org/10.1016/j.materresbull.2014.02.021.

C. M. I. Okoye, Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase, J. Physics: Condensed Matter, 15, 5945 (2003); https://doi.org/10.1088/0953-8984/15/35/304.

S. A. Korba, H. Meradji, S. Ghemid, B. Bouhafs, First Principles calculations of structural, electronic and optical properties of BaLiF3, Compt. Mater. Science, 44, 1265 (2009); https://doi.org/10.1016/j.commatsci.2008.08.012.

J. Sun, H. T. Wang, N. B. Ming, J. He and Y. Tian, Optical properties of hetero diamond B2CN using first-principles calculations, Applied physics letters, 84, 4544 (2004); https://doi.org/10.1063/1.1758781.

B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, & P. C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics, 11, 23 (2003); https://doi.org/10.1016/S0966-9795(02)00127-9.

H. Fu, D. Li, F. Peng, T. Gao, & X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Computational Materials Science, 44, 774 (2008); https://doi.org/10.1016/j.commatsci.2008.05.026.

S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823 (1954); https://doi.org/10.1080/14786440808520496.

R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society Section A, 65, 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.

M. S. Yaseen, G. Murtaza, & R. M. A. Khalil, Ab-initio study of Li based chalcopyrite compounds LiGaX2 (X= S, Se, Te) in tetragonal symmetry: A class of future materials for optoelectronic applications, Current Applied Physics, 18, 1113 (2018); https://doi.org/10.1016/j.cap.2018.06.008.

Downloads

Published

2022-12-19

How to Cite

Kumari, J., Singh, C., Choudhary, B., & Verma, A. (2022). First-principles study for physical properties and stability of Li based chalcopyrite semiconductors: Reliable for green energy sources: Array. Physics and Chemistry of Solid State, 23(4), 728–740. https://doi.org/10.15330/pcss.23.4.728-740

Issue

Section

Scientific articles (Physics)