Optimal Conditions for the Deposition of Gold Nanofilms on a Silicon by Galvanic Replacement Method
DOI:
https://doi.org/10.15330/pcss.20.3.234-238Keywords:
galvanic replacement, nanoparticles, gold film, silicon nanostructures, metal-assisted chemical etchingAbstract
The formation conditions of gold nanofilms on silicon (Si) substrate by galvanic replacement in a dimethyl sulfoxide (DMSO) solvent and their subsequent use for the fabrication of Si nanostructures by metal-assisted chemical etching (MACE) method were under study. It was found that the average size and number of Au nanoparticles increase with an increase in the reducible metal ion concentration from 2 to 8 mM HAuCl4 in DMSO, whereas the distribution of Au nanoparticles in height remains low for all concentrations of the reducible metal. In the temperature range 40 - 70°C, a different morphology of the deposited Au nanofilms observed. In particular, at 40 °C, the film is porous mainly homogeneous, whereas at a temperature of 50°C the film is rougher. The subsequent rise in temperature from 60°C to 70°C results in the formation of Au nanofilm with a discontinuous morphology. It was established that regardless of the morphology of deposited Au nanofilms, the Si nanostructures maintain a vertical orientation to the plane of the Si substrate during MACE-etching. The produced Si nanostructures were 1.5 - 2.5 μm in height and their average diameter ranged from 100 to 300 nm.
References
N. Elahi, M. Kamali, M.H. Baghersad, Talanta 184, 537 (2018) (https://doi.org/10.1016/j.talanta.2018.02.088).
G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosensors and Bioelectronics 103, 113 (2018) (https://doi.org/0.1016/j.bios.2017.12.031).
H.-L. Shuai, K.-J. Huang, Y.-X. Chen, L.-X. Fang, M.-P. Jia, Biosensors and Bioelectronics 89, 989 (2017) (https://doi.org/10.1016/j.bios.2016.10.051).
S. Govindaraju, S. R. Ankireddy, B. Viswanath, J. Kim, K. Yun, Scientific Reports 7, 40298 (2017) (doi: 10.1038/srep40298).
S. Xu, W. Ouyang, P. Xie, Y. Lin, B. Qiu, Z. Lin, G. Chen, L. Guo, Analytical Chemistry 89(3), 1617 (2017) (https://doi.org/10.1021/acs.analchem.6b03711).
D. Yin, X. Li, Y. Ma, Z. Liu, Chemical Communications 53(50), 6716 (2017) (https://doi.org/10.1039/c7cc02247f).
E. Yan, M. Cao, Y. Wang, X. Hao, S. Pei, J. Gao, Y. Wang, Z. Zhang, D. Zhang, Materials Science and Engineering C 58, 1090 (2016) (https://doi.org/10.1016/j.msec.2015.09.080).
M. Sengani, A. M. Grumezescu, V. D. Rajeswari, OpenNano 2, 37 (2017) (https://doi.org/10.1016/j.onano.2017.07.001).
M. Pérez-Ortiz, C. Zapata-Urzúa, G. A. Acosta, A. Álvarez-Lueje, F. Albericio, M. J. Kogan, Colloids and Surfaces B: Biointerfaces 158, 25 (2017) (https://doi.org/10.1016/j.colsurfb.2017.06.015).
R. Liu, Q. Wang, Q. Li, X. Yang, K. Wang, W. Nie, Biosensors and Bioelectronics 87, 433 (2017) (https://doi.org/10.1016/j.bios.2016.08.090).
Q. Gao, X. Zhang, L. Duan, X. Li, W. Lü, Superlattices and Microstructures 129, 185 (2019) (https://doi.org/10.1016/j.spmi.2019.03.028).
S. Nichkalo, A. Druzhinin, A. Evtukh, O. Bratus’, O Steblova, Nanoscale Research Letters 12(1), 106 (2017) (https://doi.org/10.1186/s11671-017-1886-2).
G. Liu, K. L. Young, X. Liao, M. L. Personick, C. A. Mirkin, Journal of the American Chemical Society 135(33), 12196 (2013) (https://doi.org/10.1021/ja4061867).
Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, W. Yang, Materials 7(7), 5169 (2014) (https://doi.org/10.3390/ma7075169).
A. Lahiri, S.-I. Kobayshi, Surface Engineering 32(5), 321 (2016) (https://doi.org/10.1179/1743294415Y.0000000060).
O. Kuntyi, M. Shepida, L. Sus, G. Zozulya, S. Korniy, Chemistry and Chemical Technology 12(3), 305 (2018) (https://doi.org/10.23939/chcht12.03.305).
M. Shepida, O. Kuntyi, S. Nichkalo, G. Zozulya, S. Korniy, Advances in Materials Science and Engineering 2019, 2629464 (2019) (https://doi.org/ 10.1155/2019/2629464).
Y. Liu, W. Sun, Y. Jiang, X.-Z. Zhao, Materials Letters 139, 437 (2015) (https://doi.org/10.1016/j.matlet.2014.10.084).