Peculiarities of structural, electrokinetic, energetic, and magnetic properties semiconductive solid solution Lu1-xVxNiSb

Authors

  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.A. Romaka Lviv Polytechnic National University, Lviv, Ukraine
  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • P. Demchenko Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. Horyn Ivan Franko National University of Lviv, Lviv, Ukraine
  • O. Poplavskyi Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • V. Pashkevych Lviv Polytechnic National University, Lviv, Ukraine
  • P. Haraniuk Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.1.84-91

Keywords:

Electric conductivity, thermopower coefficient, Fermi level

Abstract

The structural, electrokinetic, energetic, and magnetic properties of the new semiconductive solid solution Lu1-xVxNiSb, х=0–0.10, were studied. It was shown that V atoms could simultaneously occupy different crystallographic positions in different ratios, generating structural defects of acceptor and donor nature. This creates corresponding acceptor and donor bands in the bandgap εg of Lu1-xVxNiSb. The mechanism of the formation of two acceptor bands with different depths of occurrence has been established: a small acceptor band εА2, formed by defects due to the substitution of Ni atoms by V ones in the 4c position, and band εА1, generated by vacancies in the LuNiSb structure. The ratio of the concentrations of generated defects determines the position of the Fermi level εF and the conduction mechanisms. The investigated solid solution Lu1-xVxNiSb is a promising thermoelectric material.

References

K. Hartjes, W. Jeitschko, Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln=La–Nd, Sm, Gd–Tm, Lu), J. Alloys Compd. 226, 81 (1995); https://doi.org/10.1016/0925-8388(95)01573-6.

V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn, The latest heat-sensitive materials and temperature transducers, Lviv Polytechnic Publishing House, Lviv (2020). ISBN 978-966-941-478-6. [in Ukrainian].

L.I. Anatychuk, Thermoelements and thermoelectric devices. Reference book, Naukova dumka, Kyiv (1979). [in Russian].

I.Karla, J. Pierre, R.V. Skolozdra, Physical properties and giant magnetoresistance in RNiSb compounds, J. Alloys Compd, 265, 42 (1998); https://doi.org/10.1016/S0925-8388(97)00419-2.

V.V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy, Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems, J. Solid State Chem, 239, 145 (2016); https://doi.org/10.1016/j.jssc.2016.04.029.

V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk, Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems, J. Alloys Compd., 855, 157334 (2021); https://doi.org/10.1016/j.jallcom.2020.157334.

. Yu. Stadnyk, L. Romaka, V. А. Romaka, А. Horyn, V. Krayovskii, P. Klyzub, M. Rokomanyuk, Study of semiconducting thermoelectric material Er1-xZrxNiSb, Coll. Abs. XXII Int. Seminar Phys. Chem. Solids. June 17-19, 2020, Lviv, Ukraine.  2020.  P. 35.

Yu.V., Stadnyk, L.P. Romaka, A.M. Horyn, V.V. Romaka, M.V. Rokomanuk, V.Z. Pashkevych, Study of semiconducting thermoelectric material Er1-xScxNiSb, Coll. Abs. XVIII Int. Freik Conf. Phys., Technol. Thin Films and Nanosystems. October 11-16, 2021, Ivano-Frankivsk, Ukraine.  2021.  P. 88.

Yu. Stadnyk, V.A. Romaka, L. Romaka, A. Horyn, V. Pashkevych, M Rokomanuk, Experimental studies of thermoelectric material Lu1-xScxNiSb, Proc. IІ Intern. Scientific Conference «Currrent Problems of Chemistry, Materials Science and Ecology», Lutsk, Ukraine, 1-3 June 2022, p. 84-86.

V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, V.Z. Pashkevych, V.V. Romaka, A.M. Horyn, P.Yu. Demchenko, Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1-xZrxNiSb, J. Thermoelectricity, 1, 32 (2021); http://jt.inst.cv.ua/jt/jt_2021_01_en.pdf.

V.A. Romaka, Yu. V. Stadnyk, L. P. Romaka, A. M. Horyn, V. Z. Pashkevych, M.V. Rokomanuk, Features of structural, thermodynamic, energetic, kinetic and magnetic characteristic of Lu1-xZrxNiSb solid solution, Coll. Abs. XVIII Int. Freik Conf. Phys., Technol. Thin Films and Nanosystems. October 11-16, 2021, Ivano-Frankivsk, Ukraine.  2021.  P. 87.

V.A. Romaka, E.K. Hlil, Ya.V. Skolozdra, P. Rogl, Yu.V. Stadnyk, L.P. Romaka, and A.M. Goryn, Features of the Mechanisms of Generation and “Healing” of Structural Defects in the Heavily Doped Intermetallic Semiconductor n-ZrNiSn, Semiconductors, 43, 1115 (2009); https://doi.org/10.1134/S1063782609090024.

T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, Proc. EPDIC7, 378, 118 (2001); https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

B.I. Shklovskii and A.L. Efros, Electronic properties of doped semiconductors, Springer-Verlag, Berlin, Heidelberg (1984); https://doi.org/10.1007/978-3-662-02403-4.

N.F. Mott and E.A. Davis, Electron processes in non-crystalline materials, Clarendon Press, Oxford (1979).

Published

2023-03-10

How to Cite

Stadnyk, Y., Romaka, V., Romaka, L., Demchenko, P., Horyn, A., Poplavskyi, O., … Haraniuk, P. (2023). Peculiarities of structural, electrokinetic, energetic, and magnetic properties semiconductive solid solution Lu1-xVxNiSb. Physics and Chemistry of Solid State, 24(1), 84–91. https://doi.org/10.15330/pcss.24.1.84-91

Issue

Section

Scientific articles (Physics)