Influence of the toxic vapors on the gas sensitivity and structure of poly(o-toluidine)
DOI:
https://doi.org/10.15330/pcss.25.3.579-586Keywords:
poly(o-toluidine), structure, specific resistance, organic vapors, ammonia actionAbstract
In the present work, we investigated the influence of the toxic vapors (ammonia, chloroform, tetrahydrofuran, dimethylformamide, nitrobenzene, toluene) on the specific resistance, optical absorption, and structure of conducting polymer poly-o-toluidine (PoT) obtained by oxidative polymerization of o-toluidine in toluene sulfonic acid (TSA) solution. This polymer has a high level of crystallinity and is thermal stable to 473 K (200 0C). The action of organic solvent vapors causes an increase in PoT-TSA resistance by 1.3-1.4 times, while after the action of ammonia, the resistivity increases almost 500 times. The activation energy of charge transfer Ea also increases from 0.21 to 0.71 eV under the action of ammonia due to the deprotonation of the polymer and its transformation to the resistive base form. When the organic solvents are used, the observed phenomena have a different direction (resistance increase or decrease) due to the peculiarities of polymer-solvent molecular interaction. This phenomenon may be used for selective detection of solvents.
References
B. Adhikari, P. Kar, eds.: G. Korotcenkov, Polymers in Chemical Sensors, Chemical Sensors (Momentum Press, LLC, New Jersey, USA, 2010).
B. Tsizh, O. Aksimentyeva, Ways to improve the parameters of optical gas sensors of ammonia based on polyaniline, Sens. Actuator A Phys. 442 (2020); https://doi.org/10.1016/j.sna.2020.112273 0924-4247.
S. Wilson, R. Jourdan, Q. Zhang et al., New materials for micro-scale sensors and actuators. An engineering review, Mater. Sci. Eng. Rep., 56, 1 (2007); https://doi.org/10.1016/j.mser.2007.03.001.
A. Ghoorchian, N. Alizadeh, Chemiresistor gas sensor based on sulfonated dye-doped modified conducting polypyrrole film for high sensitive detection of 2,4,6-trinitrotoluene in air, Sens. Actuators B Chem., 255(1), 826 (2018); https://doi.org/10.1016/j.snb.2017.08.093.
O. Aksimentieva, B. Tsizh, M. Chokhan, Sensors of control of gaseous media in the food industry and the environment (Lviv, Pyramida, 2018).
H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors, 7, 267 (2007); https://doi.org/10.3390/S7030267.
C.-W. Hu, Y. Yamada, K. Yoshimura. A new type of gasochromic material: conducting polymers with catalytic nanoparticles, Chem. Commun., 53, 3242 (2017); https://doi.org/10.1039/C7CC00077D.
D.A. Pomogailo, S. Singh, M. Singh, Polymer-matrix nanocomposite gas-sensing materials, Inorg. Mater., 50(3), 296 (2014); https://doi.org/10.1134/S0020168514030108.
O.I. Aksimentyeva, B.R. Tsizh, Yu.Yu. Horbenko, O.I. Konopelnyk, G.V. Martynyuk, M.I. Chokhan’, Flexible elements of gas sensors based on conjugated polyaminoarenes, Mol. Cryst. Liq. Cryst., 670(1), 3 (2018); https://doi.org/10.1080/15421406.2018.1542057.
T. Lamarque, P.Le Barny, E. Obert, E. Chastaing, B. Loiseaux, I. Leray, Detection of nitro-aromatic compounds by optical gas sensors based on sensitive or photoluminescent polymers, Proc. of SPIE, 6189 (2006); http://dx.doi.org/10.1117/12.664032.
B.A. Farooqi, M. Yar, A. Ashraf, U. Farooq, Kh. Ayub, Graphene-polyaniline composite as superior electrochemical sensor for detection of cyano explosives, Eur. Polym. J., 138, 109981 (2020); https://doi.org/10.1016/j.eurpolymj.2020.109981.
D. Anaklı, S. Çetinkaya1, M. Karakışla, M. Sacak, Synthesis and characterization of conductive poly(o-anisidine)/talc composite, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2), 403 (2018) 403; https://doi.org/10.17341/gazimmfd.416349.
B.R. Tsyzh, M.R. Dzeryn, Yu.Yu. Horbenko, Gas sensitivity of poly-ortho-toluidine films, Scientific Messenger LNUVMBT named after S. Z. Gzhytskyj, 19(75), 59 (2017); http://dx.doi.org/10.15421/nvlvet7512.
A. Stepura, Yu. Horbenko, O. Konopelnyk, O. Aksimentyeva, Sensor sensitivity of thin layers of polyorthotoluidine, Visnyk of the Lviv University. Ser. Chem., 58(2), 368 (2017).
A.A. Khan, S. Shaheen, Electrical conductivity, isothermal stability and amine sensing studies of a synthetic poly-o-toluidine/multiwalled carbon nanotube/Sn(IV) tungstate composite ion exchanger doped with
p-toluenesulfonic acid, Anal. Methods, 7, 2077 (2015); https://doi.org/10.1039/C4AY02911A.
A.L. Stepura, O.I. Aksimentyeva, P.Yu. Demchenko, Features of the Structure and Physical-Chemical Properties of Poly-Ortho-Toluidine Doped with Toluenesulfonic Acid, Physics and Chemistry of Solid State, 20(1), 77 (2019); https://doi.org/10.15330/pcss.20.1.77-82.
B. Tsizh, Yu. Horbenko, M. Dzeryn, O. Aksimentyeva, Combined polymer sensitive elements for gas sensors, Mol. Cryst. Liq. Cryst., 716(1), 112 (2021); https://doi.org/10.1080/15421406.2020.1859701.
A. Elmansouri, A. Outzourhit, A. Oueriagli, A. et al., Spectroscopic characterization of electrodeposited poly(o-toluidine) thin films and electrical properties of ito/poly(o-toluidine)/aluminum schottky diodes, Act. Pass. Electron. Compon., 2007 (2007); https://doi.org/10.1155/2007/17846 .
O.I. Aksimentyeva, O.I. Konopelnyk, M.Ya. Grytsiv, G.V. Martyniuk, Charge transport in electrochromic films of polyorthotoluidine, Funct. Mater., 11(2), 300 (2004);
A. MacDiarmid, ‘Synthetic metals’: a novel role for organic polymers, Curr. Appl. Phys. 1, 269 (2001); https://doi.org/10.1016/S0379-6779(01)00508-2.
Common Solvents Used in Organic Chemistry: Table of Properties. https://organicchemistry data.org/solvents.
M.F.J. Mabesoone, A.R.A. Palmans, E.W. Meijer, Solute–Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse, J. Am. Chem. Soc., 142(47), 19781 (2020); https://doi.org/10.1021/jacs.0c09293.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 O.I. Aksimentyeva, B.R. Tsizh, Yu.Yu. Horbenko, M.I. Chokhan, A.L. Stepura, V.I. Baluk
This work is licensed under a Creative Commons Attribution 3.0 Unported License.