Mechanical properties of amorphous metal alloy Al87(Ni,Fe)8(REM)5 system as a result of short-term annealing

Authors

  • K. Khrushchyk Ivan Franko National University of Lviv, Lviv, Ukraine; University of Silesia in Katowice, Katowice, Poland
  • A. Barylski University of Silesia in Katowice, Katowice, Poland
  • K. Aniolek University of Silesia in Katowice, Katowice, Poland
  • M. Karolus University of Silesia in Katowice, Katowice, Poland
  • L. Boichyshyn Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.178-184

Keywords:

amorphous metal alloys based on aluminum, differential scanning calorimetry, microhardness, nanocrystallization, Young's modulus

Abstract

The phase transition temperatures for amorphous metals based on aluminum Al87(Ni,Fe)8(REM)5 system were determined by differential scanning calorimetry (DSC).  The mechanisms of formation and growth of nanocrystals in an amorphous matrix were predicted using kinetic models (Matusita model). It was found that after annealing at the temperature of stable nanocrystalline growth, an X-ray amorphous structure with a volume fraction of disordered nanocrystalline phases of solid state of Al(X), GdFe2, AlFe2Ni, GdFe2 for the amorphous metal alloy (AMA) Al87Y4Gd1Ni4Fe4 alloy and microcrystalline phases of solid state of Al(X), GdFe2 AlFe2Ni for the Al87Gd5Ni4Fe4 alloy are formed, which significantly affects the mechanical properties of the Al87(Ni,Fe)8(REM)5 system. The effect of annealing on the mechanical properties of amorphous aluminum-based alloys was investigated using Oliver-Pharr and Young's modulus methods it was found that thermal modification of AMAs: Al87Gd5Ni4Fe4 as a result of heat treatment of AMAs from 5 to 15 min., the microhardness increases from 0.20 GPa to 2.75 GPa, and when heat treated for 60 min at a temperatures of T3 = 645±5 K, 647±5 K, it decreases to 0.35 GPa and 0.45 GPa, respectively.

References

A. Inoue, S. Sobu, D. V. Louzguine, H. Kimura, & K. Sasamori, Ultrahigh strength Al-based amorphous alloys containing, Sc. J. Mater. Res., 19, (2004); https://doi.org/10.1557/JMR.2004.0206.

A. Inoue, N. Matsumoto, & T. Masumoto, Al–Ni–Y–Co Amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity, Mater. Trans., (1989); https://doi.org/10.2320/matertrans1989.31.493.

A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al–based systems, Progr. Mat. Sci., 43, 365 (1998); https://doi.org/10.1016/S0079-6425(98)00005-X.

W Li, L.T. Kong, J.F. Li. Thermal stability and crystallization behavior of Al86Ni9Y5 amorphous alloys with different Si addition, Mater. Charact., 194, 112387 (2022); https://doi.org/10.1016/j.matchar.2022.112387.

L.М. Boichyshyn, K.І. Khrushchyk, M.O Kovbuz., et al. Specific Features of the Transition of Amorphous Al87REM5Ni8(Fe) Alloys Into the Crystalline State Under the Influence of Temperature, Mater. Sci., 55(1), 17 (2019); https://doi.org/10.1007/s11003-019-00246-7.

Jiaojiao Yi, Liqiao Yue, Rongjie Xue, Yin Wang, et al. Mechanism underlying two-step separated fcc-Al crystallization in Al-based metallic glasses, Mater. Lett., 15, 130488 (2021); https://doi.org/10.1016/j.matlet.2021.130488.

Shuo Zhang, Kai Chong, Zhibin Zhang. Crystallization behavior and corrosion resistance of Al86Ni10Zr4 amorphous alloy under different annealing treatment conditions, J. Non Сryst. Solids., 593(1), 121775 (2022); https://doi.org/10.1016/j.jnoncrysol.2022.121775.

S. I. Mudry, Yu. O. Kulyk, L. M. Boichyshyn. Nanocrystallization of amorphous alloys Al87Ni8Dy5 indused by head treatment, Mater. Today: Proc., 62, (2022); https://doi.org/10.1016/j.matpr.2019.08.025.

Michael C. Gao, G.J. Shiflet. Devitrification sequence map in the glass forming Al–Ni–Gd system, Scr. Mater., 53(10), 1129 (2005); https://doi.org/10.1016/j.scriptamat.2005.07.021.

W.T. Kim, M. Gogebakan, B. Cantor, Heat treatment of amorphous Al85Y5Ni10 and Al85YIONi5 alloys, (1997) Mater. Sci. Eng., 226228, (1997);

J.J. Yi, L.T. Kong, M. Ferr,et al, Origin of the separated α-Al nanocrystallization with Si added to Al86Ni9La5 amorphous alloy, Mater. Charact., 178, 111199 (2021); https://doi.org/10.1016/j.matchar.2021.111199.

J. Q. Wang, H. W. Zhang, X. J. Gu, K, et al, Identification of nanocrystal nucleation and growth in Al 85Ni5Y8Co2 metallic glass with quenched¬in, Appl. Phys. Lett. ,80, 3319 (2002); https://doi.org/10.1063/1.1476388.

H. W. Sheng, Y. Q. Cheng, P. L. Lee, et al, Atomic packing in multicomponent aluminum-based metallic glasses, Acta Mater., 56, 6264 (2008); https://doi.org/10.1016/j.actamat.2008.08.049.

Y. E. Kalay, I. Kalay, J. Hwang, et al, Local chemical and topological order in Al-Tb and its role in controlling nanocrystal formation, Acta Mater., 60, 994 (2012); https://doi.org/10.1016/j.actamat.2011.11.008.

K. Khrushchyk, L. Boichyshyn, V. Kordan, Influence of annealing on mechanical properties of alloys of Al-REM-Ni(Fe), Mater. Today: Proc., 62, 5739 (2022); https://doi.org/10.1016/j.matpr.2022.02.343.

M. Avrami, Kinetics of phase change. I General theory, J. Chem. Phys., 7, (1939); https://doi.org/10.1063/1.1750380.

J.A.Augis. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Thermal Anal., 13, 283 (1978); https://doi.org/10.1007/bf01912301.

S.H. Al¬Heniti, Kinetic study of non¬isothermal crystallization in Fe78Si9B13 metallic glass, J. Alloys Compd., 484, 177 (2009); https://doi.org/10.1016/j.jallcom.2009.05.07.6.

B. Adnadevic, B. Jankovic, D.M. Minic. Kinetics of the apparent isothermal and non¬isothermal crystallization of the α¬Fe phase within the amorphous Fe81B13Si4C2, J. Phys. Chem. Sol., 71 (7), 927 (2010); https://doi.org/10.1016/j.jpcs.2010.04.009.

Y. Yinnon, D.R. Uhlmann, Applications of the thermoanalytical techniques to the study of crystallization kinetics in glass¬forming liquids, part I: Theory, J. Non¬Cryst. Sol, 54(3), 253 (1983); https://doi.org/10.1016/0022-3093(83)90069-8.

M. Vasic, D.M. Minic, V.A. Blagojevic, Mechanism and kinetics of crystallization of amorphous Fe81B13Si4C2 alloy, Thermochim. Acta, 572, 45 (2013); https://doi.org/10.1016/j.tca.2013.09.027.

Young RA ,The Rietveld method, (1993); Oxford University Press

L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines, J. Appl. Crystallogr, 32, 36 (1999); https://doi.org/10.1107/S0021889898009856.

Wiliamson GK, Hall WH (1953) Acta Metall 1:22.

S. Ahmadi, H.R. Shahverdi, S. S. Saremi, Nanocrystallization of α – Fe crystals in Fe52Cr18Mo7B16C4Nb3 bulk amorphous alloy, J. Mater. Sci. Technol., 27(6), 497 (2011); https://doi.org/10.1016/S1005-0302(11)60097-2.

D.M. Minic, A. Maricic, B. Adnadevic. Crystallization of α¬Fe phase in amorphous Fe81B13Si4C2 alloy, J. Alloys Compd., 473 (1-2), 363 (2009); https://doi.org/10.1016/j.jallcom.2008.05.087.

A.H. Moharram, M. Abu El-Oyoun, M. Rashad. Crystallization kinetics of two overlapped phases in As40Te50In10 glass, Thermochim. Acta., 555, 57 (2013); https://doi.org/10.1016/j.tca.2012.12.019.

D. Janovszky, M. Sveda, A. Syncheva, et al, Amorphous alloys and differential scanning calorimetry (DSC), J. Ther. Anal., 147, 7141 (2021); https://doi.org/10.1007/s10973-021-11054-0.

Si P, X. Bian, W. Li, J. Zhang, Z. Yang, Relationship between intermetallic compound formation and glass forming ability of Al–Ni–La alloy, Phys. Lett. А., 319 (3-4), 424 (2003); https://doi.org/10.1016/j.physleta.2003.10.060.

R. Babilas, K. Mlynarek-Zak, W. Lonski, Et al, Study of crystallization mechanism of Al-based amorphous alloys by in-situ high temperature X-ray diffraction method, Sci. Rep., 12(1), (2022); https://doi.org/10.1038/s41598-022-09640-9.

T. Mika, M. Karolus, G. Haneczok, L. Bednarska, E. Lagiewka, B. Kotur, Influence of Gd and Fe on crystallization of Al87Y5Ni8 amorphous alloy, J. Non-Cryst. Sol., 354 (27), 3099 (2008); https://doi.org/10.1016/j.jnoncrysol.2008.01.020.

Downloads

Published

2024-02-12

How to Cite

Khrushchyk, K., Barylski, A., Aniolek, K., Karolus, M., & Boichyshyn, L. (2024). Mechanical properties of amorphous metal alloy Al87(Ni,Fe)8(REM)5 system as a result of short-term annealing. Physics and Chemistry of Solid State, 25(1), 178–184. https://doi.org/10.15330/pcss.25.1.178-184

Issue

Section

Scientific articles (Chemistry)