Crystalline Size and Intrinsic Strain of Hexagonal CdTe Thin Films

Authors

  • A.I. Dobrozhan National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine
  • G.S. Khrypunov National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine
  • R.V. Zaitsev National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine
  • A.V. Meriuts National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine
  • M.M. Harchenko National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine
  • A.L. Khrypunova National Technical University «Kharkіv Polytechnic Institute», Kharkiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.2.386-394

Keywords:

DC magnetron sputtering, elastic properties, CdTe thin films, size–strain plot, X-ray Diffraction

Abstract

In this study, cadmium telluride (CdTe) thin films were synthesized using direct current (DC) magnetron sputtering, and their structural and elastic properties were extensively analyzed. Scanning electron microscopy (SEM) revealed spherical CdTe grains with an average size of approximately 850 nm. X-ray diffraction (XRD) profile analysis, complemented by the Scherrer equation, Scherrer plot, Williamson–Hall (W–H) equations (UDM, USDM, UDEDM), and the Size–Strain Plot (SSP) method, was used to evaluate crystallite size and various elastic properties such as intrinsic strain, microstress, and energy density for different planes respectively. It was observed that crystallite size and intrinsic strain increased with the thickness of the CdTe films, which was attributed to different ionization levels of dissociated Te and Cd atoms at varying sputtering powers.

References

N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells, 58(2), 209 (1999); https://doi.org/10.1016/S0927-0248(98)00204-9.

M.V. Kirichenko, R.V. Zaitsev, A.I. Dobrozhan, G.S. Khrypunov, M.M. Kharchenko, 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering, UKRCON (Kyiv, 2017), p. 355 (2017); https://doi.org/10.1109/UKRCON.2017.8100509.

G.S. Khrypunov, G.I. Kopach, A.I. Dobrozhan, R.P. Mygushchenko, O.V. Kropachek, V.M. Lyubov, Structure and optical properties of CdS polycrystalline layers for solar cells based on CdS/CdTe, Functional Materials, 26 (1), 23 (2019); https://doi.org/10.15407/FM26.01.23.

A. Dobrozhan, A. Meriuts, G. Kopach, R. Mygushchenko, Structure and Optical Properties of Thermal CdTe Thin Films after Electron Beam Irradiation 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week (Kharkiv, 2021), 701 (2021); https://doi.org/10.1109/KhPIWeek53812.2021.9570022.

A. Dobdozhan, A. Meriuts, A. Khrypunova, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week (Kharkiv, 2023) https://doi.org/10.1109/KhPIWeek61412.2023.10312950.

P.C. Dey, R. Das, Impact of silver doping on the crystalline size and intrinsic strain of MPA-capped CdTe nanocrystals: a study by williamson–Hall method and size–strain plot method, J. of Materi Eng and Perform 30, 652 (2021); https://doi.org/10.1007/s11665-020-05358-9.

P.C. Dey, R. Das, Effect of silver doping on the elastic properties of CdS nanoparticles, J. Indian J. Phys., 92, 1099 (2018); https://doi.org/10.1007/s12648-018-1214-4.

Y. Ren, X. Gao, C. Zhang, X. Liu, S. Sun, The Electronic and Elastic Properties of Si Atom Doping in TiN: A First-Principles Calculation, Coating, 8(1) 4(2018); https://doi.org/10.3390/coatings8010004.

G.I. Kopach, R.P. Mygushchenko, G.S. Khrypunov, A.I. Dobrozhan, M.M. Harchenko, Structure and Optical Properties CdS and CdTe Films on Flexible Substrate Obtained by DC Magnetron Sputtering for Solar Cells, Journal of Nano- and Electronic Physics, 9(5), 05035 (2017); https://doi.org/10.21272/jnep.9(5).05035.

A.I. Dobrozhan, G.I. Kopach, R.P. Mygushchenko, G.S. Khrypunov, M.M. Harchenko, O.V. Polezhaeva, 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties, (Odesa, 2018) art. no. 8915293 (2018); https://doi.org/10.1109/NAP.2018.8915293.

D. Kudii, A. Meriuts, A. Khrypunova, T. Shelest, V. Varvianska, R. Zaitsev, 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems, (Istanbul, 2020) art. no. 9263233, 135 (2020): https://doi.org/10.1109/IEPS51250.2020.9263233.

R.V. Zaitsev, M.V. Kirichenko, G.S. Khrypunov, S.A. Radoguz, M.G. Khrypunov, D.S. Prokopenko, L.V. Zaitseva, Operating Temperature Effect on the Thin Film Solar Cell Efficiency, Journal of Nano- and Electronic Physics, 11(4), 04029 (2019); https://doi.org/10.21272/jnep.11(4).04029.

B.P. Pandey, Structural and Elastic Properties Calculation of CdX (X= S, Se, Te) Semiconductors from First-Principles, International Journal of Applied Nanotechnology, 3(2), 8 (2017); https://doi.org/10.37628/ijan.v3i2.303.

S. Mahadevan, S.P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B.P.C. Rao, Size distribution of magnetic iron oxide nanoparticles using Warren–Averbach XRD analysis, J. Phys. Chem. Solids, 73, 867 (2012); https://doi.org/10.1016/j.jpcs.2012.02.017.

S. Sarkar, R. Das, Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis, Indian J. Pure Appl. Phys., 56(10), 765 (2018); https://doi.org/10.56042/ijpap.v56i10.19809.

R. Das, S.S. Nath, R. Bhattacharjee, Preparation of linoleic acid capped gold nanoparticles and their spectra. Physica E Low Dimens. Syst. Nanostruct., 43(1), 224 (2010); https://doi.org/10.1016/j.physe.2010.07.008.

N. Kurniawati, D.A.P. Wardani, B. Hariyanto, N.P. Har, N. Darmawan, Irzaman. Analysis of Lattice Constants and Error for The Hexagonal Crystal Structure of Silicon Dioxide Using The Cramer-Cohen Method, J. Phys.: Conf. Ser. 2019 012071 (2021); https://doi.org/10.1088/1742-6596/2019/1/012071.

R. Jacob, J. Isac, X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1-x) O3-δ, (x=0.4), Int. J. Chem. Stud., 2(5), 12(2015).

P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9.

M.S.S. Saravanan, K. Sivaprasad, P. Susila, S.P. Kumaresh, Physica B, 406(2), 165 (2011); https://doi.org/10.1016/j.physb.2010.10.023.

R. Das, S. Sarkar, X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties, Mater. Chem. Phys., 167, 97 (2015); https://doi.org/10.1016/j.matchemphys.2015.10.015.

J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, Anisotropic elasticity in hexagonal crystals, Thin Solid Films 515, 7020 (2007); https://doi.org/10.1016/j.tsf.2007.01.045.

S. Saib, S. Benyettou, N. Bouarissa, S. Ferahtia, First principles study of structural, elastic and piezoelectric properties of CdSexTe1−x ternary alloys in the wurtzite structure, Phys. Scr., 90, 035702 (2015); https://doi.org/10.1088/0031-8949/90/3/035702.

P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, O.M. Ntwaeaborwa, Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors, Optik, 153, 31 (2018); https://doi.org/10.1016/j.ijleo.2017.09.120.

A.K. Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci., 13, 251 (2011); https://doi.org/10.1016/j.solidstatesciences.2010.11.024.

D. Nath, F. Singh, R. Das, Calculating the Crystallite Size of Microsorum scolopendria AgCl Nanoparticles and Their Biological Activities, Mater. Chem. Phys., 239, 122021 (2020); https://doi.org/10.1016/j.matchemphys.2019.122021.

Downloads

Published

2025-06-27

How to Cite

Dobrozhan, A., Khrypunov, G., Zaitsev, R., Meriuts, A., Harchenko, M., & Khrypunova, A. (2025). Crystalline Size and Intrinsic Strain of Hexagonal CdTe Thin Films. Physics and Chemistry of Solid State, 26(2), 386–394. https://doi.org/10.15330/pcss.26.2.386-394

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)