Theoretical Simulation of mechanical, phonon dispersion and related electronic crystal properties of Niobium: a DFT study
DOI:
https://doi.org/10.15330/pcss.26.4.852-857Keywords:
Niobium, DFT, Mechanical properties, Phonon dispersion, DOSAbstract
In this research, we investigate the mechanical, phonon dispersion, and electronic properties of Niobium (Nb) using Density Functional Theory (DFT). Utilizing the Quantum ESPRESSO package, we performed comprehensive DFT calculations to predict Nb's properties at the atomic level. Mechanical properties were assessed by calculating the elastic constants, bulk modulus, shear modulus, and Young’s modulus. Phonon dispersion relations were obtained using density functional perturbation theory (DFPT) to evaluate dynamic stability. The electronic properties were analyzed through the band structure and density of states (DOS).The results obtained indicate that Nb exhibits exceptional mechanical stability, with elastic constants validating its robustness under high stress. Phonon dispersion analysis revealed the presence of imaginary frequencies, confirming dynamic instability. The results of electronic structure analysis demonstrated Nb's metallic nature, with significant d-orbital contributions near the Fermi level, affirming its excellent electrical conductivity. Overall, our findings contribute to the understanding and provide crucial atomic-level insights into Nb, guiding future experimental work and material development for advanced technological applications.
References
O.O.E. Enaroseha, G.E. Akpojotor, Superconductivity driven by magnetic instability in CeCu2Si2. Advances in Physics Theories and Applications 18, 54 (2013).
P. Hohenberg, & W. Kohn, Inhomogeneous Electron Gas. Physical Review, 136 (3B), B864, (1964).
W. Kohn, & L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133 (1965).
G. Grimvall, Thermophysical Properties of Materials. Elsevier, (1986).
D.T. Morelli, J.P. Heremans, & G.A. Slack, Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 66(19), 195304 (2002); https://doi.org/10.1103/PhysRevB.66.195304.
O.E. Omamoke Enaroseha and N. N. Omehe, Heat Transfer in Circular Tubes with Supercritical Fluid Using the STAR CCM + CFD Code. African Journal of Research in Physical Science 10, 24 (2020).
S. Baroni, S. de Gironcoli, A.Dal Corso, & P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515 (2001); https://doi.org/10.1103/RevModPhys.73.515.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. and Dal Corso, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502(2009); https://doi.org/10.1088/0953-8984/21/39/395502.
W. Voigt, Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B.G. Teubner. (1928).
A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49 (1929); https://doi.org/10.1002/zamm.19290090104.
R. Hill, The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.
J.P. Perdew, & Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244 (1992); https://doi.org/10.1103/PhysRevB.45.13244.
O.E. Omamoke Enaroseha, Obed Oyibo, Aziakpono Blessing Umukoro and Uyiosa O. Aigbe, Origin of Metallicity in Molybdenum: A First Principle Calculation, Physics of the Solid State, 66 (12), 653 (2024); https://doi.org/10.1134/S106378342460167X.
C. Kittel Introduction to Solid State Physics (8th ed.). John Wiley & Sons (2004).
M.J. Mehl, D.A. Papaconstantopoulos, & N. Kioussis, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Physical Review B, 54(7), 4519 (1996).
O.E. Omamoke Enaroseha, S. Joshua Apanapudor, Obed Oyibo and Michael O. Oho, Understanding the Theoretic Study of Alkali Metal (Sodium, Na) Properties from Ab Initio Calculations. Journal of Physics: Conference Series 2780, 012030. (2024); https://doi.org/10.1088/1742-6596/2780/1/012030.
M. Zarea, Ueki H and JA. Sauls Effects of anisotropy and disorder on the superconducting properties of niobium. Front. Phys.11, 1269872 (2023), https://doi.org/10.3389/fphy.2023.1269872.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Omamoke Enaroseha, Obed Oyibo, Aziakpono Umukoro, Uyiosa Aigbe, Amaju Ojobor

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




