Manufacturing Polyurethane Slag from Composite using Polyol from Polyethylene Plastic Waste

Authors

  • S. Herbirowo Research Center for Energy Materials, National Research and Innovation Agency (BRIN), PUSPIPTEK, Tangerang Selatan, Indonesia
  • M. D. Mahendra Department of Metallurgy, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, Indonesia
  • M.I. Maulana Metallurgical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Del, Toba, North Sumatra, Indonesia https://orcid.org/0000-0001-9912-8618
  • A. Trenggono Department of Metallurgy, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, Indonesia
  • U. M. R. Paturi Department of Mechanical Engineering, CVR College of Engineering, Hyderabad, Telangana, India

DOI:

https://doi.org/10.15330/pcss.26.4.923-934

Keywords:

Composite, Polyol, polyurethane foam, recycle, steel slag

Abstract

This research aims to develop polyurethane foam using recycled PET (Polyethylene Terephthalate) and HDPE (High-Density Polyethylene) plastic bottles as substitutes for polyol. Waste PET bottles were recycled through a glycolysis process to produce BHET (bis(hydroxyethyl) terephthalate), utilized as a polyol substitute in polyurethane foam production. The foam was synthesized by reacting polyol with Methylene Diphenyl Diisocyanate (MDI), with variations in the composition of distilled water as a blowing agent, silicone as a surfactant, and steel slag (10%, 10%, 10%, and 60%) to enhance mechanical properties. Four polyurethane foam samples were tested, resulting in rigid, flexible, and semi-rigid foams, depending on the formulation. Sample 1 demonstrated a compressive strength of 0.225 MPa, Young's modulus of 0.0139 MPa, yield strength of 0.174 MPa, and density of 0.11 g/cm³. Sample 2 exhibited a compressive strength of 0.18 MPa, Young's modulus of 0.0109 MPa, yield strength of 0.117 MPa, and density of 0.06 g/cm³. Sample 3 had the lowest compressive strength (0.02 MPa), Young's modulus (0.00079 MPa), yield strength (0.0092 MPa), and density (0.09 g/cm³). Sample 4 recorded a compressive strength of 0.12 MPa, Young's modulus of 0.0116 MPa, yield strength of 0.0901 MPa, and density of 0.04 g/cm³. Sample 1 exhibited the highest mechanical performance, while Sample 3 showed the lowest. These results indicate that polyurethane foam with optimal compressive strength, Young's modulus, yield strength, density, and flexibility can be produced, meeting the requirements of SNI (Standar Nasional Indonesia) Standard 0111-2009 for shoe applications.

References

S.A. Yudistirani, L. Saufina dan S. Mulatsih, Desain Sistem Pengelolaan Sampah Melalui Pemilahan Sampah Organik dan Anorganik Berdasarkan Persepsi Ibu-Ibu Rumah Tangga, Jurnal Konversi, 4(2), 29 (2015); https://doi.org/10.24853/konversi.4.2.29-42.

Badan Pusat Statistik, Jumlah dan Distribusi Penduduk. 2022. [Online] Available at: https://sensus.bps.go.id/main/index/sp2020#:~:text=Jumlah%20dan%20Distribusi%20Penduduk,adalah%20sebanyak%20270.203.917%20jiwa. [Accessed 9 April 2023].

C.M. Annur, Timbulan Sampah Indonesia Mayoritas Berasal dari Rumah Tangga, Diakses pada tanggal, (2023); https://databoks.katadata.co.id.

I.Z. Yildirim, & M. Prezzi, Chemical, mineralogical, and morphological properties of steel slag. Advances in civil engineering, 2011(1), 463638 (2011); https://doi.org/10.1155/2011/463638.

R.S. Nasution, Berbagai Cara Penanggulangan Limbah Plastik. Journal of Islamic Science and Technology, 1(1), 97 (2015); https://doi.org/10.22373/ekw.v1i1.522.

J. Siddiqui, & G. Pandey, A Review of Plastic Waste Management Strategies, International Research Journal of Environment Sciences, 2(12), 84 (2013).

A. Ghaderian, et al., Characterization of Rigid Polyurethane Foam Prepared from Recycling of PET Waste. Periodica Polytechnica Chemical Engineering, 4(59), 296 (2015); https://doi.org/10.3311/PPch.7801.

R.P. Mahyudin, Strategi Pengolahan Sampah Berkelanjutan. EnviroScienteae, 10, 33 (2014).

P. Benyathiar, et al., Polyethylene Terephthalate (PET) Bottle-to Bottle Recycling for the Beverage Industry: A Review. Polymers, 14, 1(2022); https://doi.org/10.3390/polym14122366.

Q.F. Yue, C.X. Wang, L.N. Zhang, Y. Ni, & Y.X. Jin, Glycolysis of poly (ethylene terephthalate) (PET) using basic ionic liquids as catalysts. Polymer Degradation and Stability, 96(4), 399 (2011); https://doi.org/10.1016/j.polymdegradstab.2010.12.020.

A. Syariffuddeen, A. Norhafizah & A. Salmiaton, Glycolysis, Of Poly (Ethylene Terephthalate) (PET) Waste Under Conventional Convection Conductive Glycolysis. International Journal of Engineering Research & Technology (IJERT), 1(10), 1 (2012); https://doi.org/10.17577/IJERTV1IS10103.

S. Baliga, & W.T. Wong, Depolymerization of Poly(ethylene Terephthalate) Recycled from Post-Consumer Soft-Drink Bottles. Journal of Polymer Science: Part A: Polymer Chemistry, 27(6), 2071(1989); https://doi.org/10.1002/pola.1989.080270625.

A. Ivdre, A. Abolins, I. Sevastyanova, M. Kirpluks, U. Cabulis, & R. Merijs-Meri, Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste PET. Polymers, 2(4), 738 (2020); https://doi.org/10.3390/polym12040738.

R.Y. Kim, Blowing Agent Introduction Systems and Methods. Wilmington, Patent No. 20070141188 (2002).

N.F. Cheremisinoff, Handbook of Engineering Polymeric Materials. Society of the Plastics Ind., (New York. 1989.)

R.Y. Kim, C.J. Ball, T.A. Burnham, & L.A. Kishbaugh, U.S. Patent Application No. 13/573,797. (2014).

D. Ridayani, M.B. Malino, and A. Asri, Analisis Porositas dan Susut Bakar Keramik Berpori Berbasis Clay dan Serat Tandan Kosong Kelapa Sawit, Prisma Fisika, 5(2), 51 (2017); https://doi.org/10.26418/pf.v5i2.20707.

W. Hidayat, Klasifikasi Dan Sifat Material Teknik Serta Pengujian Material, Material Teknik, 1 (2019); https://doi.org/10.31227/osf.io/6bmfu.

A.B.D.M.D. Bisioni, M. S. Hamzah, Sam, A. and Sifat Kuat Tekan Dan Impak Komposit Abu Sekam Padi/Alumina, Jurnal Mekanikal, 10(1), 955 (2019).

M. Martinez, Sebuah Pemahaman Dasar, Scanning Electron Microscopy (SEM) and Mikroskop Elektron (SEM) dan Energy Dispersive X-ray Detection (EDX), (2010).

C. Defonseka, Practical Guide to Flexible Polyurethane Foams. Smithers Information Limited, (2013); [Online]. Available: https://books.google.co.id/books?id=ffwlDwAAQBAJ.

K. Ashida, Polyurethane and Related Foams. (London: CRC Press. 2007).

M. Zhu, S. Yang, Z. Liu, S. Pan, & X. Liu, Flame-Retarded Rigid Polyurethane Foam Composites with the Incorporation of Steel Slag/Dimelamine Pyrophosphate System: A New Strategy for Utilizing Metallurgical Solid Waste. Molecules, 27(24), 8892 (2022); https://doi.org/10.3390/molecules27248892 .

H. Lim, S. H. Kim, and B. K. Kim, Effects of silicon surfactant in rigid polyurethane foams, Express Polym. Lett, 2(3), 194 (2008); https://doi.org/10.3144/expresspolymlett.2008.24.

G. Tang, X. Liu, L. Zhou, P. Zhang, D. Deng, & H. Jiang, Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Advanced Powder Technology, 31(1), 279 (2020); https://doi.org/10.1016/j.apt.2019.10.020.

L. Ifa, Nurdjannah, Z. Sabara, & F. Jaya, Pembuatan Bahan Polimer dari Minyak Sawit. 1st ed. Makassar: Penerbit Nas Media Pustaka. (2018).

Downloads

Published

2025-12-26

How to Cite

Herbirowo, S., Mahendra, M. D., Maulana, M., Trenggono, A., & Paturi, U. M. R. (2025). Manufacturing Polyurethane Slag from Composite using Polyol from Polyethylene Plastic Waste. Physics and Chemistry of Solid State, 26(4), 923–934. https://doi.org/10.15330/pcss.26.4.923-934

Issue

Section

Scientific articles (Chemistry)