Electrical Properties of Ge/Ge(x)Si(1-x) thin films on the boundary of semiconductor-dielectric transition
DOI:
https://doi.org/10.15330/pcss.26.2.395-402Keywords:
quantum size effects, dielectric-semiconductor transition, internal mechanical strains, germanium thin films, intrinsic carrier concentration, specific electrical conductivityAbstract
Calculations of the dependencies of carrier concentration and specific electrical conductivity at room temperature for the undoped and doped germanium nanofilms, grown on the Ge(x)Si(1-x) substrate with crystallographic orientation (001), on a film thickness and substrate composition, have been provided based on the theory of electrical conductivity for the two-dimensional semiconductor nanostructures. It was established that the dielectric-semiconductor transition for thin germanium films with a thickness of can be achieved either by increasing the film thickness, which reduces the effectiveness of quantum size effects or by increasing the silicon content in the Ge(x)Si(1-x) substrate. The latter increases the internal mechanical stress in the film and, consequently, the concentration of intrinsic current carriers. Doping such germanium film by the donor impurities with the ionization energy also leads to the implementation of the dielectric-semiconductor transition. The presented calculations of the electrical properties of germanium thin films can be utilized in developing the scientific foundations for their synthesis and in designing channels of the n-MOSFET and n-MODFET transistors, lasers based on heterojunctions, and electro-optical modulators based on such films.
References
N. Rinaldi, M. Schröter, Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology: Modeling and Circuit Applications (River Publishers), (2022); https://doi.org/10.13052/rp-9788793519602.
M. Rudan, R. Brunetti, S. Reggiani, Handbook of semiconductor devices (Springer, 2023); https://doi.org/10.1007/978-3-030-79827-7.
Y. Shimura, C. Godfrin, A. Hikavyy, J. Aguilera, G. Katsaros, R. Loo, Compressively strained epitaxial Ge layers for quantum computing applications, Materials Science in Semiconductor Processing, 174, 108231 (2024); https://doi.org/10.1016/j.mssp.2024.108231.
E. Wangila, P. Lytvyn, H. Stanchu, C. Gunder, F. De Oliveira, S. Saha, G. Salamo, Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy, Crystals, 13(11), 1557(2023); https://doi.org/10.3390/cryst13111557.
H. Stanchu, S. Kryvyi, S. Margiotta, M. Cook, J. Grant, H. Tran, S. Yu, Comprehensive material study of Ge grown by aspect ratio trapping on Si substrate, Journal of Physics D: Applied Physics, 57(25), 255107 (2024); https://doi.org/10.1088/1361-6463/ad365b.
C. Zhao, B. Xu, Z. Wang, Boron-doped III–V semiconductors for Si-based optoelectronic devices, Journal of Semiconductors, 41(1), 011301(2020); https://doi.org/10.1088/1674-4926/41/1/011301.
N. B. Singh, S. K. Shukla, Two-dimensional nanostructures for biomedical technology: Properties of two-dimensional nanomaterials (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-817650-4.00003-6.
P. Chaisakul, N. Koompai, P. Limsuwan, , Theoretical investigation of a low-voltage Ge/SiGe multiple quantum wells optical modulator operating at 1310 nm integrated with Si3N4 waveguides, AIP Advances, 8(11), 115318(2018); https://doi.org/10.1063/1.5064701.
Y. Zhang, J. Gao, S. Qin, M. Cheng, K. Wang, L. Kai, J. Sun, , Asymmetric Ge/SiGe coupled quantum well modulators, Nanophotonics, 10(6), 1765(2021); https://doi.org/10.1515/nanoph-2021-0007.
T. Dutta, N. Yadav, Y. Wu, G. Cheng, X. Liang, S. Ramakrishna, A. Yadav, Electronic properties of 2D materials and their junctions, Nano Materials Science, 6(1), 1(2024); https://doi.org/10.1016/j.nanoms.2023.05.003.
K.C. Saraswat, Germanium. In 75th Anniversary of the Transistor, (Wiley, 2023); https://doi.org/10.1002/9781394202478.ch36.
J. Ding, H. Tong, J. Long, R. Zhang, B. Zhang, C. Wang, F. Qiu, ACS Applied Electronic, Microcrystal-induced crystallization effect for high-quality germanium/silicon heteroepitaxial nanofilms, Materials, 3(8), 3391(2021); https://pubs.acs.org/doi/10.1021/acsaelm.1c00373.
K. Sawano, Y. Hoshi, S. Kubo, K. Arimoto, J. Yamanaka, K. Nakagawa, Y. Shiraki, Structural and electrical properties of Ge (111) films grown on Si (111) substrates and application to Ge (111)-on-Insulator, Thin Solid Films, 613, 24(2016); https://doi.org/10.1016/j.tsf.2015.11.020.
M. Myronov, Molecular Beam Epitaxy of High Mobility Silicon, Silicon Germanium and Germanium Quantum Well Heterostructures. In Molecular Beam Epitaxy (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-812136-8.00003-7.
A. Ghosh, M. Clavel, P. Nguyen, M. Meeker, G. Khodaparast, R. Bodnar, M. Hudait, Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy, Aip Advances, 7(9), 095214(2017); https://doi.org/10.1063/1.4993446.
S. Bedell, S. Hart, S. Bangsaruntip, C. Durfee, J. Ott, M. Hopstaken, P. Gumann, Low-temperature growth of strained germanium quantum wells for high mobility applications, ECS Transactions 98(5), 215(2020); https://doi.org/10.1149/09805.0215ecst.
T. Nagano, R. Hara, K. Moto, K. Yamamoto, T. Sadoh, Improved carrier mobility of Sn-doped Ge thin films (≤ 20 nm) on insulator by interface-modulated solid-phase crystallization combined with surface passivation, Materials Science in Semiconductor Processing,165, 107692(2023); https://doi.org/10.1016/j.mssp.2023.107692.
A. Nigro, E. Jutzi, N. Forrer, A. Hofmann, G. Gadea, I. Zardo, High quality Ge layers for Ge/SiGe quantum well heterostructures using chemical vapor deposition, Physical Review Materials, 8(6), 066201(2024); https://doi.org/10.1103/PhysRevMaterials.8.066201.
L. Wei, Y. Miao, Y. Ding, C. Li, H. Lu, Y. Chen, Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation, Journal of Crystal Growth 548, 125838 (2020); https://doi.org/10.1016/j.jcrysgro.2020.125838.
G. Zhou, K. Lee, D. Anjum, Q. Zhang, X. Zhang, C. Tan, G. Xia, Impacts of doping on epitaxial germanium thin film quality and Si-Ge interdiffusion, Optical Materials Express, 8(5), 1117 (2018); https://doi.org/10.1364/OME.8.001117.
X. Yu, H. Jia, J. Yang, M. Masteghin, H. Beere, M. Mtunzi, H. Liu, Effects of phosphorous and antimony doping on thin Ge layers grown on Si, Scientific Reports, 14(1), 7969(2024); https://doi.org/10.1038/s41598-024-57937-8
S.V. Luniov, Calculation of Electron Mobility for the Strained Germanium Nanofilm, Journal of Nano-and Electronic Physics, 11(2), 02023 (2019); https://jnep.sumdu.edu.ua/en/full_article/2732.
S.V. Luniov, P.F. Nazarchuk, O.V. Burban, Electrical properties of strained germanium nanofilm, Physics and Chemistry of Solid State, 22(2), 313 (2021); https://doi.org/10.15330/pcss.22.2.313-320.
S. Luniov, O. Burban, Y. Koval, IEEE 10th International Conference Nanomaterials: Applications & Properties 02TM03-1 (IEEE, Sumy, 2020); https://ieeexplore.ieee.org/document/9309623.
S.V. Luniov, P.F. Nazarchuk, O.V. Burban, Calculation of the Electron Mobility for the Δ1-Model of the Conduction Band of Germanium Single Crystals, Semiconductors, 48(4), 438 (2014); https://doi.org/10.1134/S1063782614040198.
S.V. Luniov, O.V. Burban, P.F. Nazarchuk, Electron scattering in the ∆1-model of the conduction band of germanium crystals, Semiconductors, 49(5), 574 (2015); https://doi.org/10.1134/S1063782615050140.
S.V. Luniov, The impact of intrinsic conductivity on the mechanisms of tensoresistance of uniaxially deformed n-Ge single crystals, Journal of Physical Studies, 23(3), 3701 (2019); https://doi.org/10.30970/jps.23.3701.
S.V. Luniov, Calculation of band structure of the strained germanium nanofilm, doped with a donor impurity, Physica E: Low-dimensional Systems and Nanostructures, 118, 113954 (2020); https://doi.org/10.1016/j.physe.2020.113954.
U. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Netherlands, 2008); https://doi.org/10.1007/978-1-4020-6481-4.
G. Bir, G. Pikus, D. Louvish, Symmetry and strain-induced effects in semiconductors (Wiley, New York, 1974).
S.V. Luniov, P.F. Nazarchuk, O.V. Burban, Parameters of the high-energy Δ1-minimum of the conduction band in n-Ge, Journal of Physical Studies, 17(3), 3702 (2013); https://doi.org/10.30970/jps.17.3702.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sergiy Luniov, Pavlo Shygorin, Bohdan Venhryn

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




