First-principles study of mixing in the system of layered dichalcogenides MoS2-WS2

Authors

DOI:

https://doi.org/10.15330/pcss.26.2.261-266

Keywords:

transition metal dichalcogenides, solid solutions, mixing energy, ground states, Density Functional Theory, Alloy Cluster Expansion

Abstract

The thermodynamic stability and mixing behavior of the MoS₂-WS₂ system were investigated using a cluster expansion model constructed from density functional theory (DFT) calculations. The alloy cluster expansion approach enabled the efficient sampling of atomic configurations, overcoming the computational limitations of direct DFT calculations. The accuracy of the cluster expansion model was validated against additional DFT calculations, achieving a root-mean-squared error close to 1.0 × 10⁻⁴ eV/atom and R2 = 0.74. The mixing energy landscape was analyzed to determine the existence of ordered ground-state structures and assess the stability of solid solutions. The results indicate that MoS₂-WS₂ forms a stable solid solution across the full compositional range, with specific ordering tendencies at a broad range of intermediate atomic concentrations of tungsten, from XW = 0.33 to 0.66. The constructed convex hull suggests a multitude of ground states in this range with ordering patterns of a single solute atom residing in a hexagon of solvent atoms within a single layer. Generally small mixing energy values imply a dominant role of entropy at synthesis temperatures. The findings provide insight into the thermodynamic factors governing mixing in transition metal dichalcogenide MoS₂-WS₂ solid solutions, contributing to the rational design of materials based on them.

References

A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying, Nanoscale, 6, 5820 (2014); https://doi.org/10.1039/C4NR00177J.

M. Ye, D. Zhang, Y.K. Yap, Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides, Electronics, 6, 43 (2017); https://doi.org/10.3390/electronics6020043.

A. Piacentini, A. Daus, Z. Wang, M.C. Lemme, D. Neumaier, Potential of Transition Metal Dichalcogenide Transistors for Flexible Electronics Applications, Advanced Electronic Materials, 9, 2300181 (2023); https://doi.org/10.1002/aelm.202300181.

D.M. Khaidar, W.N.R.W. Isahak, Z.A.C. Ramli, K.N. Ahmad, Transition metal dichalcogenides-based catalysts for CO2 conversion: An updated review, International Journal of Hydrogen Energy, 68, 35 (2024); https://doi.org/10.1016/j.ijhydene.2024.04.220.

D.O. Idisi, B. Mwakikunga, Two-dimensional layered metal dichalcogenides-based heterostructures for solar cells applications: A review, Solar Energy, 263, 111981 (2023); https://doi.org/10.1016/j.solener.2023.111981.

S. Ali, S.S. Ahmad Shah, M. Sufyan Javed, T. Najam, A. Parkash, S. Khan, M.A. Bajaber, S.M.M. Eldin, R.A. Tayeb, M.M. Rahman, J. Qi, Recent Advances of Transition Metal Dichalcogenides-Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions, The Chemical Record, 24, e202300145 (2024); https://doi.org/10.1002/tcr.202300145.

M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons, 3, 90 (2018); https://doi.org/10.1039/C7NH00137A.

C. Chen, Y. Yang, X. Zhou, W. Xu, Q. Cui, J. Lu, H. Jing, D. Tian, C. Xu, T. Zhai, H. Xu, Synthesis of Large-Area Uniform MoS2–WS2 Lateral Heterojunction Nanosheets for Photodetectors, ACS Appl. Nano Mater., 4 5522 (2021); https://doi.org/10.1021/acsanm.1c00890.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures, Nat Nanotechnol., 9 682 (2014); https://doi.org/10.1038/nnano.2014.167.

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, J. Xu, Lateral Built-In Potential of Monolayer MoS2-WS2 In-Plane Heterostructures by a Shortcut Growth Strategy, Adv. Mater., 27, 6431–6437 (2015); https://doi.org/10.1002/adma.201502375.

C. Ataca, H. Şahin, S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure, J. Phys. Chem. C, 116, 8983 (2012); https://doi.org/10.1021/jp212558p.

M.A. Meitl, Z.T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, J.A. Rogers, Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Materials, 5 33 (2006); https://doi.org/10.1038/nmat1532.

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. van der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., 1, 011002 (2014); https://doi.org/10.1088/2053-1583/1/1/011002.

S. Vishwanath, X. Liu, S. Rouvimov, L. Basile, N. Lu, A. Azcatl, K. Magno, R.M. Wallace, M. Kim, J.-C. Idrobo, J.K. Furdyna, D. Jena, H.G. Xing, Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy, Journal of Materials Research, 31, 900 (2016); https://doi.org/10.1557/jmr.2015.374.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat Mater, 13, 1135 (2014); https://doi.org/10.1038/nmat4091.

M. Morant-Giner, I. Brotons-Alcázar, N.Y. Shmelev, A.L. Gushchin, L.T. Norman, A.N. Khlobystov, A. Alberola, S. Tatay, J. Canet-Ferrer, A. Forment-Aliaga, E. Coronado, WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters, Chemistry – A European Journal, 26, 6670 (2020); https://doi.org/10.1002/chem.202000248.

H.-P. Komsa, A.V. Krasheninnikov, Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties, J. Phys. Chem. Lett., 3 3652 (2012); https://doi.org/10.1021/jz301673x.

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter, 29, 465901 (2017); https://doi.org/10.1088/1361-648X/aa8f79.

J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048 (1981); https://doi.org/10.1103/PhysRevB.23.5048.

O.O. Vasiliev, Thermodynamic Properties of Hexagonal Molybdenum Disulfide Calculated from First Principles, Powder Metall. Met. Ceram., 58, 230 (2019); https://doi.org/10.1007/s11106-019-00068-x.

O.O. Vasiliev, Thermodynamic Properties of Tungsten Disulfide from First Principles in Quasi-Harmonic Approximation, Powder Metall. Met. Ceram., 59 576 (2021); https://doi.org/10.1007/s11106-021-00185-6.

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.

A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic simulation environment—a Python library for working with atoms, J. Phys.: Condens. Matter, 29, 273002 (2017); https://doi.org/10.1088/1361-648X/aa680e.

J.M. Sanchez, The Cluster Expansion Method, in: J.L. Morán-López, J.M. Sanchez (Eds.), Theory and Applications of the Cluster Variation and Path Probability Methods (Springer US, Boston, MA,: 175 (1996); https://doi.org/10.1007/978-1-4613-0419-7_11.

M. Angqvist, W.A. Muñoz, J.M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T.H. Rod, P. Erhart, ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions, Adv. Theory Simul., 2, 1900015 (2019); https://doi.org/10.1002/adts.201900015.

Downloads

Published

2025-06-21

How to Cite

Vasiliev, O. (2025). First-principles study of mixing in the system of layered dichalcogenides MoS2-WS2. Physics and Chemistry of Solid State, 26(2), 261–266. https://doi.org/10.15330/pcss.26.2.261-266

Issue

Section

Scientific articles (Chemistry)