Reciprocity Relation in Thermoelectric Composites: Optimizing Materials for Energy Efficiency and Thermal Management
DOI:
https://doi.org/10.15330/pcss.26.3.466-472Keywords:
Thermoelectricity, composites, percolation, kinetic coefficientAbstract
Effective kinetic properties of two-phase heterogeneous media with thermoelectric properties have been considered. These properties manifest themselves when an electric current and a heat flow coexist in the medium. It is shown that in some cases, it is possible to generalize the reciprocity relations obtained in the absence of thermoelectric phenomena and find invariants (combinations of effective thermoelectric coefficients) with respect to changes in the phase concentration in the two-dimensional case. For the three-dimensional case, using the moving percolation threshold approach in the mean-field theory, it is shown that similar reciprocity relations (invariants) can be approximately satisfied when the percolation threshold is shifted.
References
J. Huang, J.P. Male, Y. Sun, R. Gurunathan, P. Huang, G. J. Snyder, Y. Lin, Effective reduction of matrix thermal conductivity through composite softening, Newton, 1, 100008 (2025); https://doi.org/10.1016/j.newton.2024.100008.
N.D. Wood, L.J. Gillie, D.J. Cooke, M. Molinari, A Review of Key Properties of Thermoelectric Composites of Polymers and Inorganic Materials, Materials, 15, 8672, (2022); https://doi.org/10.3390/ma15238672.
T. Parashchuk, O.Cherniushok, O. Smitiukh, O. Marchuk, K. T. Wojciechowski, Structure Evolution and Bonding Inhomogeneity toward High Thermoelectric Performance in Cu2CoSnS4−xSex Materials, Chem. Mater., 35, 4772 (2023); https://doi.org/10.1021/acs.chemmater.3c00586.
A. Kosonowski, A. Kumar, T. Parashchuk, R. Cardoso-Gil, K. T. Wojciechowski, Thermal conductivity of PbTe–CoSb3 bulk polycrystalline composite: role of microstructure and interface thermal resistance, Dalton Trans., 50, 1261 (2021), https://doi.org/10.1039/D0DT03752D.
Ashutosh Kumar, Preeti Bhumla, Artur Kosonowski, Karol Wolski, Szczepan Zapotoczny, Saswata Bhattacharya,* and Krzysztof T. Wojciechowski, Synergistic Effect of Work Function and Acoustic Impedance Mismatch for Improved Thermoelectric Performance in GeTe-WC Composite, ACS Appl. Mater. Interfaces, 14, 44527 (2022); https://doi.org/10.1021/acsami.2c11369.
S. Torquato, Random Heterogeneous Materials. Microstructure and Macroscopic Properties, (Springer Verlag: New York, USA, 2002) https://doi.org/10.1115/1.1483342.
B. Ya. Balagurov Electrophysical Properties in composites. (Leland 2015) 752 p.
I.V. Andrianov, J. Awrejcewicz, V.V. Danishevskyy, Asymptotical Mechanics of Composites, (Springer: Cham, Germany, 2018) 313. https://doi.org/10.1007/978-3-319-65786-8.
T.C. Choy, Effective medium theory: principles and applications, (Oxford University Press: Oxford, UK, 2016) https://doi.org/10.1093/acprof:oso/9780198705093.001.0001.
A.A. Snarskii, I.V. Bezsudnov, V.A. Sevryukov, A. Morozovskiy, J. Malinsky, Transport Processes in Macroscopically Disordered Media. From Mean Field Theory to Percolation, (Springer Verlag: New York, USA, 2016); https://doi.org/10.1007/978-1-4419-8291-9.
D. Stauffer, A. Aharon. Introduction To Percolation Theory 2nd ed. (CRC Press, 2018).
V.D. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen Ann. Phys. 416 (7), 636, (1935); https://doi.org/10.1002/andp.19354160705.
R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, J. Appl. Phys., 23, 779 (1952); https://doi.org/10.1063/1.1702301.
A. M. Dykhne, Contluctivity of a Two-dimensional Two-phase System, Sov. Phys. JETP, 32(1), 65 (1971).
J. P. Straley, Thermoelectric properties of inhomogeneous materials, J.Phys.D: Applied Physics, 14(11), 2101, (1981); https://doi.org/10.1088/0022-3727/14/11/017.
V. Halpern, The Thermopower of Binary Mixtures J.Phys.C, 16 (7), L217(1983).
A. M. Dykhne, Private communication (1980).
D.M. Rowe Thermoelectrics Handbook (Macro to Nano). (Boca-Raton: Taylor Francis, 2006).
A.K. Sarychev, A.P. Vinogradov, Effective Medium Theory for the Magnetoconductivity Tensor of Disordered Materials, Phys. Stat. Sol. (b) (1983);https://doi.org/10.1002/pssb.2221170252.
A. A. Snarskii, M. Shamonin, P. Yuskevich, Effect of magnetic-field-induced restructuring on the elastic properties of magnetoactive elastomers, Journal of Magnetism and Magnetic Materials, 517, 167392 (2021)https://doi.org/10.1016/j.jmmm.2020.167392.
A.A. Snarskii, D. Zorinets, M. Shamonin, V. M. Kalita, Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: Electric and magnetic phenomena, Physica A: Statistical Mechanics and its Applications, 535 (C) (2019); https://doi.org/10.1016/j.physa.2019.122467.
A. A. Snarskii, M. Shamonin, P. Yuskevich, D.V. Saveliev, I.A. Belyaeva, Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold, Physica A: Statistical Mechanics and its Applications, 560 (C), (2020); https://doi.org/10.1016/j.physa.2020.125170.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I. Ivanova, A. Snarskii, V. Fedotov, I. Didur

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




