Determination of the Fermi energy of electrons in lead telluride based on measurements of the Seebeck coefficient
DOI:
https://doi.org/10.15330/pcss.26.3.584-591Keywords:
lead telluride, thermoelectric propertes, scattering mechanism, Fermi energyAbstract
The possibilities of using the model of dominance of one carrier scattering mechanism for calculating the Fermi energy µ using experimental values of the Seebeck coefficient Sexp were analyzed. The specific electrical conductivity of n-PbTe:I was calculated in the relaxation time approximation with simultaneous consideration of many scattering mechanisms. The obtained Fermi energy values were compared with the values calculated as µ(Sexp). The influence of corrections to the Bloch form of wave functions and screening of scattering centers by carriers on the numerical values of mobilities and numerical values of Fermi energies determined in the model of dominance of one scattering mechanism was investigated.
References
Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson, G. Ceder, G. Hautier, A. Jain, G. J. Snyder, Effective Mass and Fermi Surface Complexity Factor from Ab Initio Band Structure Calculations. Comput. Mater, 3 (1), 1 (2017); https://doi.org/10.1038/s41524-017-0013-3.
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature, 473 (7345), 66 (2011); https://doi.org/10.1038/nature09996.
О.М. Matkivskyi, V.R. Balan, М.О. Halushchak, І.B. Dadiak, G.D. Mateik, І.V. Horichok, Thermal conductivity of GeBiTe solid solutions. Physics And Chemistry Of Solid State, 25 (1), 189 (2024); https://doi.org/10.15330/pcss.25.1.185-190.
B.M. Askerov, Electron Transport Phenomena in Semiconductors. 1994. https://doi.org/10.1142/1926.
Y. Xiao, W. Li, C. Chang, Y. Chen, L. Huang, J. He, L.-D. Zhao, Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying. Journal of Alloys and Compounds. (2017); https://doi.org/10.1016/j.jallcom.2017.06.296.
T. Parashchuk, Z. Dashevsky, K. Wojciechowski, Feasibility of a High Stable PbTe:In Semiconductor for Thermoelectric Energy Applications. J. Appl. Phys., 125 (24), 245103 (2019); https://doi.org/10.1063/1.5106422.
Z. Dashevsky, I. Horichok, M. Maksymuk, A.R. Muchtar, B. Srinivasan, T. Mori, Feasibility of high performance in p-type Ge1-xBixTe materials for thermoelectric modules. J Am Ceram Soc., 1 (2022); https://doi.org/10.1111/jace.18371.
D.M. Zayachuk, The Dominant Mechanisms of Charge-Carrier Scattering in Lead Telluride. Semiconductors, 31 (2), 173 (1997); https://doi.org/10.1134/1.1187322.
R. Knura, T. Parashchuk, A. Yoshiasa, K.T. Wojciechowski, Origins of Low Lattice Thermal Conductivity of Pb1-xSnxTe Alloys for Thermoelectric Applications. Dalt. Trans., 50 (12), 4323 (2021); https://doi.org/10.1039/d0dt04206d.
O. Khshanovska, T. Parashchuk, I. Horichok, Estimating the upper limit of the thermoelectric figure of merit in n- and p-type PbTe. Materials Science in Semiconductor Processing, 160, 107428 (2023); https://doi.org/10.1016/j.mssp.2023.107428.
D. M.Freik, S. I.Mudryi, I. V.Gorichok, R. O.Dzumedzey, O. S.Krynytskyi, & T. S. Lyuba, (2014). Charge carrier scattering mechanisms in thermoelectric PbTe: Sb. Ukrainian journal of physics, (59,№ 7), 706-711; https://doi.org/10.15407/ujpe59.07.0706.
P. Yanzhong, A.D. LaLonde, H. Wang, nd G.J. Snyder, Low effective mass leading to high thermoelectric performance. Energy Environ. Sci., 5, 7963 (2012); https://doi.org/10.1039/c2ee21536e.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Т. Potiatynnyk, O. Matkivskyi, V. Hovdiak, I. Horichok

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




