A study of acousto-electron effects in semiconductor quantum dots and bionanocomplexes based on them using deep machine learning

Authors

  • Olesya Dan'kiv Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • Andrii Stolyarchuk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • Oleksandr Viychuk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • Ihor Stolyarchuk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • Oleh Kuzyk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.4.882-887

Keywords:

core-shell quantum dot, bionanocomplex, acousto-electron effect, deep machine learning

Abstract

An artificial neural network architecture has been developed that is capable of predicting changes in the energy spectrum of semiconductor quantum dots and their bionanocomplexes under the influence of an acoustic wave and interaction with human serum albumin molecules based on its specified geometric sizes, elastic constants and deformation potential constants of the allowed energy bands of quantum dot materials, as well as the frequency and amplitude of the ultrasonic wave and the surface concentration of human serum albumin. Two artificial neural network architectures have been implemented and optimized. Both models contain three hidden layers; however, the second architecture involves expanding the input space by adding harmonic functions. Both approaches to neural network modeling demonstrate good agreement with the results of mathematical modelling, provided that the input parameters lie within the training range. In the case when the input parameters lie outside the training sample, the model using additional harmonic functions at the input demonstrates a much better result. Within the framework of the developed model for the CdSe/ZnS/CdS/ZnS QD–human serum albumin bionanocomplex, the dependence of the energy shift of the radiation quantum on the frequency of the acoustic wave was investigated for different values ​​of the surface concentration of albumin and different geometric sizes of the core and shell of the quantum dot.

References

H. Huang, O. Alkhazragi, D. Liang, F. Grillot, Future roles of solid-state quantum dot light sources, Appl. Phys. Lett., 126, 080501 (2025); https://doi.org/10.1063/5.0251447.

S.N. Sharma, P. Semalti, R. Bhawna, A.S. Rao, Pioneering advancements in quantum dot solar cells: Innovations in synthesis and cutting-edge applications, Curr. Opin. Colloid Interface Sci., 77, 101905 (2025); https://doi.org/10.1016/j.cocis.2025.101905.

C. Zhu, Z. Chen, S. Gao, B.L. Goh, I.B. Samsudin, K.W. Lwe, Y. Wu, C. Wu, X. Su, Recent advances in non-toxic quantum dots and their biomedical applications, Prog. Nat. Sci.: Mater. Int., 29, 628 (2019); https://doi.org/10.1016/j.pnsc.2019.11.007.

M.S.B. Ağbulut, E. Elibol, M. Çadırcı et al., Fluorescent CdTe/ZnS Core/Shell Quantum Dots for Sensitive Metabolite Detection in Real Samples, J. Fluoresc. (2025); https://doi.org/10.1007/s10895-025-04138-9.

S. Souri, M. Marandi, Formation of a potential barrier by a ZnSXSe1−X electron-blocking layer to improve the efficiency of CdSe0.3S0.7/CdSe quantum dot sensitized solar cells, J. Electroanal. Chem., 964, 118331 (2024); https://doi.org/10.1016/j.jelechem.2024.118331.

M.A. Mimona, M.I.H. Rimon, F.T. Zohura, J.M. Sony, S.I. Rim, M.M.R. Arup, M.H. Mobarak, Quantum dot nanomaterials: Empowering advances in optoelectronic devices, Chem. Eng. J. Adv., 21, 100704 (2025); https://doi.org/10.1016/j.ceja.2025.100704.

G.S. Selopal, H. Zhao, Zh.M. Wang, Core/Shell Quantum Dots Solar Cells, Adv. Funct. Mater., 30, 1908762 (2020); https://doi.org/10.1002/adfm.201908762.

O.V. Kuzyk, O.O. Dan’kiv, R.M. Peleshchak, I.D. Stolyarchuk, Springer Proc. Phys., 312, 291 (2024); https://doi.org/10.1007/978-3-031-67527-0_31.

W. Yang, B. Zhang, N. Ding, W. Ding, L. Wang, M. Yu, Q. Zhang, Acoustoelectronic Effect in Semiconductor Quantum Dots with a Multilayer Shell, Ultrason. Sonochem., 30, 103 (2016); https://doi.org/10.1016/j.ultsonch.2015.11.015.

F. Stewart, G. Cummins, M.V. Turcanu, Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall, Sci. Rep., 11, 2584 (2021); https://doi.org/10.1038/s41598-021-82240-1.

N.S. Awad, M. Haider, V. Paul, N.M. AlSawaftah, J. Jagal, R. Pasricha, G.A. Husseini, Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer, Pharmaceutics, 13, 2073 (2021); https://doi.org/10.3390/pharmaceutics13122073.

P.M. Tomchuk, N.I. Grigorchuk, D.V. Butenko, Generation of sound by metal nanoclusters in a dielectric matrix, Ukr. J. Phys, 55, 440 (2010); http://archive.ujp.bitp.kiev.ua/files/journals/55/4/550412p.pdf.

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, The influence of acoustic deformation on the recombination radiation in InAs/GaAs heterostructure with InAs quantum dots, Physica E, 119, 113988 (2020); https://doi.org/10.1016/j.physe.2020.113988.

R. Wojnarowska-Nowak, J. Polit, A. Zięba, I.D. Stolyarchuk, S. Nowak, M. Romerowicz-Misielak, E.M. Sheregii, Colloidal quantum dots conjugated with human serum albumin – interactions and bioimaging properties, Opto-Electron. Rev., 25, 137 (2017); https://doi.org/10.1016/j.opelre.2017.04.004.

J.R. Taylor, D.S. Sankar, Vision transformer based deep learning of topological indicators in Majorana nanowires, Phys. Rev. B, 111, 104208 (2025); https://doi.org/10.1103/PhysRevB.111.104208.

E. Corcione, F. Jakob, L. Wagner et al., Machine learning enhanced evaluation of semiconductor quantum dots, Sci. Rep., 14, 4154 (2024); https://doi.org/10.1038/s41598-024-54615-7.

M. Prabhune, G. Belge, A. Dotzauer, J. Bullerdiek, M.Radmacher, Comparison of mechanical properties of normal and malignant thyroid cells, Micron, 43 (12), 1267 (2012); https://doi.org/10.1016/j.micron.2012.03.023.

O. Kuzyk, O. Dan’kiv, R. Peleshchak, I. Stolyarchuk, V. Kuhivchak, Modeling the deformation of the semiconductor quantum dot with a multilayer shell in a living cell, Phys. Chem. Solid State, 24, 675(2023); https://doi.org/10.15330/pcss.24.4.675-681.

Downloads

Published

2025-12-22

How to Cite

Dan'kiv, O., Stolyarchuk, A., Viychuk, O., Stolyarchuk, I., & Kuzyk, O. (2025). A study of acousto-electron effects in semiconductor quantum dots and bionanocomplexes based on them using deep machine learning. Physics and Chemistry of Solid State, 26(4), 882–887. https://doi.org/10.15330/pcss.26.4.882-887

Issue

Section

Scientific articles (Physics)