Influence of Cu2+ ions on the optical properties of CdS/L-Cys colloid solutions

Authors

  • O. Krupko Bukovinian State Medical University, Chernivtsi, Ukraine https://orcid.org/0000-0003-2799-3033
  • L.P. Shcherbak Yuriy Fedkovich Chernivtsi National University, Chernivtsi, Ukraine
  • Yu.B. Khalavka Yuriy Fedkovich Chernivtsi National University, Chernivtsi, Ukraine
  • V.H. Pylypko Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
  • Kh. Holovata Bukovinian State Medical University, Chernivtsi, Ukraine
  • S. Udod Bukovinian State Medical University, Chernivtsi, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.4.713-717

Keywords:

nanoparticles, colloidal solutions,, optical properties, photoluminescence, heterostructures

Abstract

The work investigated the effect of Copper (II) ions on the optical properties of colloidal solutions of Cadmium sulfide nanoparticles stabilized with L-Cysteine ​​in aqueous solution at room temperature 250C. The introduction of Cu2+ ions into the reaction medium was carried out by ion exchange and co-precipitation methods.

It was found that the addition of solutions of Copper (II) salts of different concentrations to colloidal solutions of CdS nanoparticles causes agglomeration and, accordingly, a shift of the optical absorption edge to the long-wavelength region, an increase in the width of the forbidden bandgap of Cadmium Sulfide, and a decrease in the intensity of photoluminescence, except for a solution with a concentration of Copper (II) ions of 1·10-5 mol/l.

References

M.F. Frasco, N. Chaniotakis, Semiconductor Quantum Dots in Chemical Sensors and Biosensors, Sensors, 9, 7266 (2009); https://doi.org/10.3390/s90907266.

Sajad Karimzadeh, Kiumars Bahrami. Role of L-cysteine and CdS as promoted agents in photocatalytic activity of TiO2 nanoparticles, Journal of Environmental Chemical Engineering, 7(6), 103454 (2019); https://doi.org/10.1016/j.jece.2019.103454.

Kanika Khurana, Nirmala Rani, Neena Jaggi. Enhanced photoluminescence of CdS quantum dots thin films on Cu and Ag nanoparticles, Thin Solid Films, 737, 138928 (2021); https://doi.org/10.1016/j.tsf.2021.138928.

J. Liu, D. Shan, T. Zhang, Y. Li, R. Wang, Dr. M. Liu. Ag2S/CdS-Heterostructured Nanorod Synthesis by L–Cysteine-Mediated Reverse Microemulsion Method, ChemistrySelect 4(35), 10219 (2019); https://doi.org/10.1002/slct.201902171.

Yu.A. Nitsuk, M.I. Kiose, Yu.F. Vaksman, V.A. Smyntyna, I.R. Yatsunskyi Optical Properties of CdS Nanocrystals Doped with Zinc and Copper, Semiconductors, 53, 3(3); 361 (2019); https://doi.org/10.1134/S1063782619030138.

Gai, Qixiao, Ren, Shoutian, Zheng, Xiaochun, Liu, Wenjun, Dong, Quanli. Enhanced photocatalytic performance of Ag/CdS by L-cysteine functionalization: Combination of introduced co-catalytic groups and optimized injection of hot electrons, Applied Surface Science, 579, 151838 (2022); https://doi.org/10.1016/j.apsusc.2021.151838.

Y-C Chang, Y-R. Lin Construction of Ag/Ag2S/CdS Heterostructures through a Facile Two-Step Wet Chemical Process for Efficient Photocatalytic Hydrogen Production, Nanomaterials, 13(12), 1815 (2023); https://doi.org/10.3390/nano13121815.

N. Singh, S. Prajapati, Prateek, R. Kumar Gupta. Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties, Nanofabrication, 7, 89 (2022); https://doi.org/10.37819/nanofab.007.212.

K.P. Tiwary, F. Ali, R.K. Mishra, S. Kumar, K. Sharma. Study of structural, morphological and optical properties of Cu and Ni doped CdS nanoparticles prepared by microwave assisted solvo thermal method, Digest Journal of Nanomaterials and Biostructures, 14(2), 305 (2019).

Unni Sivasankaran, Soumya T. Cyriac, Shalini Menon et al. Fluorescence Turn off Sensor for Brilliant Blue FCF-an Approach Based on Inner Filter Effect , J. Fluorensc, 27, 69 (2017); https://doi.org/10.1007/s10895-016-1935-8.

Khan Behlol Ayaz Ahmed, Ahalya Pichikannu, Anbazhagan Veerappan. Fluorescence cadmium sulfide nanosensor for selective recognition of chromium ions in aqueous solution at wide pH range, Sensors and Actuators B: Chemical, 221, 1055 (2015); https://doi.org/10.1016/j.snb.2015.07.035.

Meiying Huang, Cun Liu, Cun Peixin et al. Facet-specific cation exchange and heterogeneous transformation of cadmium sulfide nanoparticles induced by Cu(II), Environmental science. Nano, 10(2), 463 (2023); https://doi.org/10.1039/D2EN00876A.

I. Ibrahim, HN. Lim, NM. Huang, A. Pandikumar Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions, PLoS ONE, 11(5), e0154557 (2016); https://doi.org/10.1371/journal.pone.0154557.

P. Ayyanusamy, R. Venkatesan, A. Rajan, J. Annaraj, U. Mahalingam, P. Ramasamy, K. Bethke, J. Mayandi Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection, Zeitschrift für Physikalische Chemie, (2025); https://doi.org/10.1515/zpch-2024-0847.

Yu.A. Nitsuk, M.I. Kiose, Yu.F. Vaksman, V.A. Smyntyna, I.R. Yatsunskyi Optical Properties of CdS Nanocrystals Doped with Zinc and Copper, Semiconductors, 53(3), 361 (2019); https://doi.org/10.1134/S1063782619030138.

GL Wang, YM Dong, ZJ Li. Metal ion (silver, cadmium and zinc ions) modified CdS quantum dots for ultrasensitive copper ion sensing, Nanotechnology, 22(8), 0855032011 (2011); https://doi.org/10.1088/0957-4484/22/8/085503.

Downloads

Published

2025-11-06

How to Cite

Krupko, O., Shcherbak, L., Khalavka, Y., Pylypko, V., Holovata, K., & Udod, S. (2025). Influence of Cu2+ ions on the optical properties of CdS/L-Cys colloid solutions. Physics and Chemistry of Solid State, 26(4), 713–717. https://doi.org/10.15330/pcss.26.4.713-717

Issue

Section

Scientific articles (Chemistry)