Use of microcoagulation effect to control water binding in a heterogeneous polymethylsiloxane/silica/water system

Authors

  • V. V. Turov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • I. I. Gerashchenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • T. V. Krupskaya Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • N. Yu. Klymenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • K. O. Stepanuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.21.1.132-139

Keywords:

1H-NMR spectroscopy, silica, methylsiloxane, decamethoxin, microcoagulation

Abstract

The binding of water in heterogeneous systems containing polymethylsiloxane (PMS) pyrogenic nanosilica (A-300) water and the surface-active substance decametoxin (DMT) was studied. Composite systems were created using metered mechanical loads. The low-temperature 1H NMR spectroscopy was used to measure the structural and thermodynamic parameters of bound water. It is shown that when filling PMS interparticle gaps with hydrocompaction, the interfacial energy of water in the interparticle gaps of hydrophobic PMS with the same hydration is twice as large as the interfacial energy of water in hydrophilic silica A-300. This is due to the smaller linear dimensions of the interparticle gaps in the ICP compared with the A-300. In the composite system, A-300/PMS/DMT/H2O, a non-additive growth of water binding energy is observed, which is likely due to the formation, under the influence of mechanical load in the presence of water, of microheterogeneous sites, consisting mainly of the hydrophobic and hydrophilic components (microcoagulation). Thus, using mechanical loads, you can control the adsorption properties of composite systems.

References

M.O. Mchedlov-Petrosyan, V.I. Lebed, O.M. Glazkova, O.V. Lebed, Colloid chemistry (Karazin KhNU, Kharkov, 2012) (in Ukrainian).

B.D. Deryagin, Success of chemistry 48(4), 675 (1979) (https://doi.org/10.1070/RC1979v048n04ABEH002332).

V.M. Muller, Colloid chemistry 58(5), 634 (1996).

I.F. Efremov, Periodic colloidal structures (Chemistry, Leningrad, 1971).

Yu. G. Frolov, Colloid chemistry course. Surface phenomena and disperse systems (Chemistry, Moscow, 1982).

V.M. Gun’ko, V.V. Turov, P.P. Gorbik, Water at the interface (Naukova dumka, Kiev, 2009).

D.W. Aksnes, K. Forl, L. Kimtys, Phys. Chem. Chem. Phys. 3, 3203 (2001) (https://doi.org/10.1039/B103228N).

O.V. Petrov, I. Furó, Progr. NMR Spectroscopy 54(2), 97 (2009).

V.V. Turov, V.M. Gun’ko, Clustered water and ways to use it. (Naukova dumka, Kiev, 2011).

V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press Boca Raton, 2013).

V.M. Gun’ko, V.V. Turov, V.M. Bogatyrev, V.I. Zarko, R. Leboda, E.V. Goncharuk, A.A. Novza, A.V. Turov, A.A. Chuiko, Adv. Colloid Interface Sci. 118, 125 (2005) (https://doi.org/10.1016/j.cis.2005.07.003).

I.B. Slinyakova, T.I. Denisova, Organosilicon adsorbents: production, properties, application, (Naukova dumka, Kiev, 1988).

Y.N. Shevchenko, B.M. Dushanin, N.I. Yashina, Silicon for the chemical industry (Norway, Sandefjord, 1996), p. 114.

Yu.N. Shevchenko, B.M. Dushanin, A.V. Polyanskiy, N.I. Yashina, Hydrogels of methylsilicic acid as adsorbents of medium molecular metabolites and a method for their preparation (RU Patent 2111979, 1998).

I.A. Mayev, YU.N. Shevchenko, A.B. Petukhov, The clinical use of Enterosgel in patients with pathology of the digestive system. New approaches to therapy (Ministry of Health of the Russian Federation, Moscow, 2000).

I.A. Volokhonskiy, N.M. Pokrasen, V.V. Turov, Ukr. Chem. Journal 58(8), 640 (1992).

V.M. Gun’ko, V.V. Turov, E.V. Pakhlov, T.V. Krupska, M.V. Borysenko, M.T. Kartel, B. Charmas, Lengmuir 34(40), 12145 (2018) (https://doi.org/10.1021/acs.langmuir.8b03110).

V.M. Gun’ko, V.V. Turov, E.V. Pakhlov, E.M. Matkovsky, T.V. Krupska, M.T. Kartel, B. Charmas, J. Non-Crystalline Solids 500, 351 (2018) (https://doi.org/10.1016/j.jnoncrysol.2018.08.020).

V.V. Turov, V.M. Gun’ko, E.V. Pakhlov, T.V. Krupska, M.D. Tsapko, B. Charmas, M.T. Kartel, Colloid and Surf. A 552, 39 (2018) (https://doi.org/10.1016/j.colsurfa.2018.05.017).

T.V. Krupskaya, V.V. Turov, V.N. Barvinchenko, K.O. Filatova, L.A. Suvorova, G. Iraci, M.T. Kartel, Adsorption Sci. & Technol. 36(1-2), 300 (2017) (https://doi.org/10.1177/0263617417691768).

V.M. Gun’ko, V.V. Turov, E.V. Pakhlov, T.V. Krupska, B. Charmas, Applied Surface Sci. 459, 171 (2018) (https://doi.org/10.1016/j.apsusc.2018.07.213).

Thermodynamic properties of individual substances. Glushkov V.P. (Ed.). (Nauka, Moskow, 1978).

M.F. Chaplin, Biophys. Chem. 83(3), 211 (2000) (https://doi.org/10.1016/s0301-4622(99)00142-8).

P.M. Wiggins, B.A.E. MacClement, Internat. Rev. Cytol. 108, 249 (1987) (https://doi.org/10.1016/s0074-7696(08)61440-0).

Published

2020-03-29

How to Cite

Turov , V. V., Gerashchenko, I. I., Krupskaya, T. V., Klymenko, N. Y., & Stepanuk, K. O. (2020). Use of microcoagulation effect to control water binding in a heterogeneous polymethylsiloxane/silica/water system. Physics and Chemistry of Solid State, 21(1), 132–139. https://doi.org/10.15330/pcss.21.1.132-139

Issue

Section

Scientific articles