Фазові рівноваги в системі Gd–Cr–Ge при 1070 K
DOI:
https://doi.org/10.15330/pcss.22.2.248-254Ключові слова:
інтерметаліди, потрійна система, фазові рівноваги, кристалічна структураАнотація
Методами рентгенофазового, рентгеноструктурного і рентгеноспектрального аналізів досліджено взаємодію компонентів та побудовано ізотермічний переріз діаграми стану потрійної системи Gd–Cr–Ge при 1070 К у повному концентраційному інтервалі. У системі Gd–Cr–Ge за температури відпалювання утворюються три тернарні сполуки: Gd117Cr52Ge112 (структурний тип Tb117Fe52Ge112, просторова група Fm-3m, символ Пірсона cF1124, a = 2.8971(6) нм), GdCr6Ge6 (структурний тип SmMn6Sn6, просторова група P6/mmm, символ Пірсона hP16, a = 0.51797(2), c = 0.82901(4) нм) та GdCr1-хGe2, для якої рентгенівським дифракційним методом порошку проведено уточнення кристалічної структури (структурний тип CeNiSi2, просторова група Cmcm, символ Пірсона oS16, a = 0.41569(1), b = 1.60895(6), c = 0.40318(1) нм, RBragg = 0.0413, Rp = 0.0510). Для сполуки GdCr1-xGe2 визначено область гомогенності (x = 0.73 – 0,69).
Посилання
M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Visnyk Lviv. Univ. Ser. Chem. 60(1), 38 (2019) https://doi.org/10.30970/vch.6001.038.
P.S. Salamakha, Y.M. Prots, J. Alloys Compd. 215, 51 (1994) https://doi.org/10.1016/0925-8388(94)90817-6.
M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R Serkiz, A. Horyn, Phys. Chem. Solid State 20(4), 376 (2019) https://doi.org/10.15330/pcss.20.4.376-383.
J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994) https://doi.org/10.1016/0925-8388(94)90769-2.
P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997) https://doi.org/S0925-8388(96)03109-X.
F.M. Mulder, R.C. Thiel, J.H.V.J. Brabers, R.F. de Boer, K.H.J. Buschow, J. Alloys Compd. 198, L1 (1993) https://doi.org/10.1016/0925-8388(93)90130-F.
P. Schobinger-Papamantellos, J. Rodríguez-Carvajal, K.H.J. Buschow, J. Alloys Compd. 255, 67 (1997) https://doi.org/10.1016/S0925-8388(96)02872-1.
H. Bie, A. Tkachuk, A. Mar, J. Solid State Chemistry 182(1), 122 (2009) https://doi.org/10.1016/j.jssc.2008.10.013.
A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 184(2), 227 (2011) https://doi.org/10.1016/j.jssc.2010.10.026/.
O.I. Bodak, E.I. Gladyshevsky, Ternary systems containing rare earth metals (Vyshcha shkola, Lvov, 1985) (in Russian).
H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 19(18), 4613 (2007) https://doi.org/10.1021/cm0727+.
A.V. Morozkin, Y.D. Seropegin, V.K. Portnov, I.A. Sviridov, A.V. Leonov, Mater. Res. Bull. 33, 903 (1998) https://doi.org/10.1016/S0025-5408(98)00051-8.
L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014) https://doi.org/10.1107/S1600576714001058.
J. Rodriguez-Carvajal, Recent developments of the program FullProf. Commission on Powder Diffraction, IUCr Newsletter. 26, 12 (2001).
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65 (1969) https://doi.org/10.1107/S002188986900656X.
T.B. Massalski, in: Binary Alloy Phase Diagrams (ASM, Metals Park, Ohio (1990).
H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, (Materials Park (OH): American Society for Metals, 2000).
I. Jandl, K.W. Richter, J. Alloys Compd. L6, 500 (2010) https://doi.org/10.1016/j.jallcom.2010.03.200.
Y.S. Pukas, R.E. Gladyshevskii, Phys. Chem. Solid State 8, 347 (2007).
A.G. Tharp, G.S. Smith, Q.C. Johnson, Acta Crystallogr. 20, 583 (1966) https://doi.org/10.1107/S0365110X66001294.
V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 30(5), 96 (1989) (in Russian).