Physics and Chemistry of Solid State Direct Reduction of Iron Ore by Hydrogen Plasma

Authors

  • Kali Charan Sabat Maulana Azad National Institute of Technology

DOI:

https://doi.org/10.15330/pcss.22.2.292-300

Keywords:

Reduction of iron ore, Direct reduced iron, Sponge iron, Iron production process, Hydrogen plasma, Non-thermal plasma, Plasma physics, Plasma chemistry, Plasma thermodynamics, Plasma kinetics

Abstract

Presently, Iron is produced from iron ores by using carbon from coal. The production process is consisting of many stages. The involvement of multi-stages needs high capital investments, large-scale equipments, and produces large amounts of carbon dioxide (CO2) responsible for environmental pollution. There have been significant efforts to replace carbon with hydrogen (H2). Although H2 is the strongest reductant, it still also has thermodynamic and kinetic limitations. However, these thermodynamic and kinetic limitations could be removed by hydrogen plasma (HP). HP comprises rovibrationally excited molecular, atomic, and ionic states of hydrogen. All of them contribute to thermodynamic advantage by making the Gibbs standard free energy more negative, which makes the reduction of iron oxides feasible at low temperatures. Apart from the thermodynamic advantage, these excited species increase the internal energy of HP, which reduces the activation energy, thereby making the reduction easier and faster. Apart from the thermodynamic and kinetic advantage of HP, the byproduct of the reaction is environmentally benign water. This review discusses the physics and chemistry of iron ore reduction using HP, emphasizing the solid-state reduction of iron ore. HP reduction of iron ore is a high potential and attractive reduction process.

References

K.C. Sabat, A.B. Murphy, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 48(3), 1561 (2017) (https://doi.org/10.1007/s11663-017-0957-1 ).

E. Basson, World Steel Association (09 April), (2021) (https://www.worldsteel.org/en/dam/jcr:f7982217-cfde-4fdc-8ba0-795ed807f513/World%2520Steel%2520in%2520Figures%25202020i.pdf ).

A. Carpenter, IEA Clean Coal Centre, (2012)

(https://usea.org/sites/default/files/012012_CO2%20abatement%20in%20the%20iron%20and%20steel%20industry_ccc193.pdf ).

K.C. Sabat, P. Rajput, R.K. Paramguru, B. Bhoi, B.K. Mishra, Plasma Chemistry and Plasma Processing 34(1), 1 (2014) (https://doi.org/10.1007/s11090-013-9484-2 ).

G. Bachner, J. Mayer, K.W. Steininger, A. Anger-Kraavi, A. Smith, T.S. Barker, Ecological Economics 172(106631), (2020) (https://doi.org/10.1016/j.ecolecon.2020.106631 ).

P. Rajput, K.C. Sabat, R.K. Paramguru, B. Bhoi, B.K. Mishra, Ironmaking & Steelmaking 41(10), 721 (2014) (https://doi.org/10.1179/1743281214Y.0000000186 ).

K.C. Sabat, R.K. Paramguru, S. Pradhan, B.K. Mishra, Plasma Chemistry and Plasma Processing 35(2), 387 (2015) (https://doi.org/10.1007/s11090-014-9602-9 ).

K.C. Sabat, R.K. Paramguru, B.K. Mishra, Plasma Chemistry and Plasma Processing 36(4), 1111 (2016) (https://doi.org/10.1007/s11090-016-9710-9 ).

K.C. Sabat, R.K. Paramguru, B.K. Mishra, Plasma Chemistry and Plasma Processing 37(4), 979 (2017) (https://doi.org/10.1007/s11090-017-9818-6 ).

K.C. Sabat, R.K. Paramguru, B.K. Mishra, Plasma Chemistry and Plasma Processing 38(3), 621 (2018) (https://doi.org/10.1007/s11090-018-9880-8 ).

J. Mayer, G. Bachner, K.W. Steininger, Journal of Cleaner Production 210, 1517 (2019) (https://doi.org/10.1016/j.jclepro.2018.11.118 ).

J.-M. Oh, J.-H. Seo, J.-W. Lim, Japanese Journal of Applied Physics 59(SA), SAAB07 (2019) (https://iopscience.iop.org/article/10.7567/1347-4065/ab43a0/meta ).

S.K. Samal, M.K. Mohanty, S.C. Mishra, B. Mishra, Plasma Processing of Iron Ore, in: Iron Ores, Intech Open 2020 (http://dx.doi.org/10.5772/intechopen.94050 ).

Y. Nakamura, M. Ito, H. Ishikawa, I. Michihisa, I. Hideki, Plasma Chemistry and Plasma Processing 1(2), 149 (1981) (https://doi.org/10.1007/BF00564577 ).

B. Abolpour, M.M. Afsahi, A. Soltani Goharrizi, M. Azizkarimi, Ironmaking & Steelmaking 1 (2017) (https://doi.org/10.1080/03019233.2017.1405146 ).

K. Furuyama, K. Yamanaka, E. Higurashi, T. Suga, Japanese Journal of Applied Physics 57(2S1), 02BC01 (2018) (https://doi.org/10.7567/JJAP.57.02BC01 ).

J. Yoo, D. Lee, J. Lee, T. Kim, H. Jin, G.S. Yun, ArXiv Preprint ArXiv:2102.13369 (2021) (https://arxiv.org/abs/2102.13369#:~:text=26%20Feb%202021%5D-,Catalytic%20effect%20of%20plasma%20in%20lowering%20the%20reduction%20temperature,_%7B2%7DO_%7B3%7D&text=Atmospheric%20pressure%20plasma%20(APP)%20generates,are%20useful%20for%20surface%20activations.&text=A%20near%2Dinfrared%20laser%20is,to%20control%20the%20surface%20temperature ).

H.J. Sceats, PhD Dissertation, (2018) (https://hdl.handle.net/11124/172534 ).

L. Guo, J. Gao, S. Zhong, Q. Bao, Z. Guo, Journal of Iron and Steel Research International 26(1), 32 (2019) (https://doi.org/10.1007/s42243-018-0078-3 ).

X. Chen, S. Shen, L. Guo, S.S. Mao, Chemical Reviews 110(11), 6503 (2010) (https://doi.org/10.1021/cr1001645 ).

A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009) (https://doi.org/10.1039/B800489G ).

H.Y. Sohn, M. Olivas-Martinez, Journal of Metals 66(9), 1557 (2014) (https://doi.org/10.1007/s11837-014-1120-y ).

K.C. Sabat, International Conference on Applied Physics, Power and Material Science 1172(1), 1 (2019) (https://doi.org/10.1088/1742-6596/1172/1/012043 ).

K.C. Sabat, Journal of Physics: Conference Series 1172(1), 1 (2019) (https://doi.org/10.1088/1742-6596/1172/1/012086 ).

K.C. Sabat, Plasma Chemistry and Plasma Processing 39(4), 1071 (2019) (https://doi.org/10.1007/s11090-019-09963-y ).

S. Seetharaman, Treatise on Process Metallurgy Volume 1: Process Fundamentals (Waltham, MA 02451, USA, Elsevier, 2013) (https://www.sciencedirect.com/book/9780080969862/treatise-on-process-metallurgy ).

S. Seetharaman, Treatise on Process Metallurgy Volume 2: Process Phenomena (Waltham, MA 02451, USA, Elsevier, 2013) (https://www.sciencedirect.com/book/9780080969848/treatise-on-process-metallurgy ).

S. Seetharaman, Treatise on Process Metallurgy Volume 3: Industrial Processes (Waltham, MA 02451, USA, Elsevier, 2013) (https://www.sciencedirect.com/book/9780080969886/treatise-on-process-metallurgy ).

NASA Science, (accessed April 9, 2021) (https://science.nasa.gov/science-news/science-at-nasa/1999/ast07sep99_1 ).

A.B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, T. Sato, J.J.J. Lowke, Journal of Physics D: Applied Physics 42(19), 194006 (2009) (https://doi.org/10.1088/0022-3727/42/19/194006 ).

R. Ye, A.B. Murphy, T. Ishigaki, Plasma Chemistry and Plasma Processing 27(2), 189 (2007) (https://doi.org/10.1007/s11090-007-9055-5 ).

A.B. Murphy, Journal of Physics D: Applied Physics 46(22), 224004 (2013) (https://doi.org/10.1088/0022-3727/46/22/224004 ).

A.B. Murphy, Plasma Chemistry and Plasma Processing 20(3), 279 (2000) (https://doi.org/10.1023/A:1007099926249 ).

S.C. Snyder, A.B. Murphy, D.L. Hofeldt, L.D. Reynolds, Physical Review E 52(3), 2999 (1995) (https://doi.org/10.1103/PhysRevE.52.2999 ).

A.B. Murphy, Plasma Chemistry and Plasma Processing 15(2), 279 (1995) (https://doi.org/10.1007/BF01459700 ).

A.B. Murphy, Plasma Chemistry and Plasma Processing 20(3), 279 (2000) (https://doi.org/10.1023/A:1007099926249 ).

A.B. Murphy, Chemical Physics 398(1), 64 (2012) (https://doi.org/10.1016/j.chemphys.2011.06.017 ).

A.B. Murphy, C.J.J. Arundelli, Plasma Chemistry and Plasma Processing 14(4), 451 (1994) (https://doi.org/10.1007/BF01570207 ).

A.B. Murphy, E. Tam, Journal of Physics D: Applied Physics 47(29), (2014) (https://doi.org/10.1088/0022-3727/47/29/295202 ).

J. Aubreton, M.F.F. Elchinger, P. Fauchais, Plasma Chemistry and Plasma Processing 18(1), 1 (1998) (https://doi.org/10.1023/A:1021785125690 ).

A.B. Murphy, M. Tanaka, S. Tashiro, T. Sato, J.J.J. Lowke, Journal of Physics D: Applied Physics 42(11), 115205 (2009) (https://doi.org/10.1088/0022-3727/42/11/115205 ).

P. Andre, J. Aubreton, M.F. Elchinger, V. Rat, P. Fauchais, A. Lefort, A.B. Murphy, Plasma Chemistry and Plasma Processing 24(3), 435 (2004) (https://doi.org/10.1007/s11090-004-2278-9 ).

V. Rat, A.B. Murphy, J. Aubreton, M.F. Elchinger, P. Fauchais, Journal of Physics D: Applied Physics 41(18), 183001 (2008) (https://doi.org/10.1088/0022-3727/41/18/183001 ).

A.B. Murphy, Plasma Chemistry and Plasma Processing 35(3), 471 (2015) (https://doi.org/10.1007/s11090-015-9620-2 ).

Y. Liu, S. Zhang, B. Huang, D. Dai, A.B. Murphy, T. Shao, Journal of Physics D: Applied Physics 54(9), 95202 (2020) (https://iopscience.iop.org/article/10.1088/1361-6463/abca61/meta ).

S. Tashiro, N. Mukai, Y. Inoue, A.B. Murphy, T. Suga, M. Tanaka, Materials 13(7), 1619 (2020) (https://doi.org/10.3390/ma13071619 ).

Y. Guo, D.H. Seo, J. Hong, D. Su, H. Wang, J. Zheng, X. Li, A.B. Murphy, K.K. Ostrikov, International Journal of Hydrogen Energy 43(41), 18735 (2018) (https://doi.org/10.1016/j.ijhydene.2018.07.204 ).

F. Chen, Y. Mohassab, S. Zhang, H.Y. Sohn, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 46(4), 1716 (2015) (https://doi.org/10.1007/s11663-015-0345-7 ).

H.Y. Sohn, Y. Mohassab, Journal of Sustainable Metallurgy 2(3), (2016) (https://doi.org/10.1007/s40831-016-0054-8 ).

M.E. Choi, PhD Dissertation, The University of Utah, USA, 2010.

J. Meichsner, M. Schmidt, R. Schneider, H.-E.H.E. Wagner, Nonthermal Plasma Chemistry and Physics (2013) (https://doi.org/10.1201/b12956 ).

D. Staack, B. Farouk, A. Gutsol, A. Fridman, Plasma Sources Science and Technology 17(2), 25013 (2008) (https://doi.org/10.1088/0963-0252/17/2/025013 ).

P.J. Bruggeman, N. Sadeghi, D.C.C. Schram, V. Linss, Plasma Sources Science and Technology 23(2), 023001 (2014) (https://doi.org/10.1088/0963-0252/23/2/023001 ).

Downloads

Published

2021-05-26

How to Cite

Sabat, K. C. (2021). Physics and Chemistry of Solid State Direct Reduction of Iron Ore by Hydrogen Plasma . Physics and Chemistry of Solid State, 22(2), 292–300. https://doi.org/10.15330/pcss.22.2.292-300

Issue

Section

Review