Synthesis and Characterization of Binary Reduced Graphene Oxide/Metal Oxide Nanocomposites

Array

Authors

  • Baris Avar Zonguldak Bülent Ecevit University
  • Mrutyunjay Panigrahi School of Mechanical Engineering, Vellore Institute of Technology

DOI:

https://doi.org/10.15330/pcss.23.1.101-112

Keywords:

Binary nanocomposites, rGO/ZnO, rGO/CuO, rGO/TiO2, rGO/Ag2O, XRD, SEM, EDX, Raman analysis

Abstract

Graphene/metal oxide composites have generated interest for a variety of applications, such as energy storage, catalysts, and electronics, etc. However, one of the primary technical barriers to real applications has been the lack of practical and environmentally benign synthesis methods for producing homogenous graphene/metal oxide nanocomposites on a wide scale. Therefore, a simple, efficient, and environmentally friendly approach to the synthesis of graphene (reduced graphene oxide: rGO)/metal oxide (MO) nanocomposites was developed with the chemical reaction of graphene oxide (GO) and various metal oxide powders under mild temperature conditions. In this study, the GO was synthesized from graphite powder using modified Hummer’s technique initially. Later, using ascorbic acid (AA) as a reducing agent, various binary nanocomposites such as rGO/ZnO, rGO/CuO, rGO/TiO2, and rGO/Ag2O were synthesized by in situ approach. The structural and surface properties of the synthesized binary nanocomposites were extensively examined by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDX), and Raman spectroscopy techniques. The XRD analysis of the synthesized binary rGO/MO nanocomposites confirmed the nanocrystalline nature. However, the FESEM and EDX analysis substantiated the MO nanoparticles were uniformly distributed onto the rGO layers anchoring of MO onto rGO particles and interacted with the rGO residual functional groups. Raman spectroscopy analysis indicated the increased number of defects because of the interfacial interaction between rGO and MO and the formation of binary rGO/MO nanocomposites.

References

W.C. Oh, F.J. Zhang, Asian Journal of Chemistry 23(2), 875 (2011); https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=23_2_98.

S.N. Alam, N. Sharma, L. Kumar, Graphene 6, 1 (2017); https://doi.org/10.4236/graphene.2017.61001.

A.P. Benevides, A.R. Campos, L.C. Vieira, C.R. Perez, D.V. Cesar, Materials Research 23(1), e20190580 (2020); https://doi.org/10.1590/1980-5373-MR-2019-0580.

R. Ramadan, S.K. Abdel-Aal, Journal of Materials Science: Materials in Electronics 32, 19667 (2021); https://doi.org/10.1007/s10854-021-06489-y.

K. Kanishka, H. De Silva, H.H. Huang, M. Yoshimura, Applied Surface Science 447, 338 (2018); https://doi.org/10.1016/j.apsusc.2018.03.243.

K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, Carbon 53, 38 (2013); https://doi.org/10.1016/j.carbon.2012.10.013.

U.C. Rajesh, J. Wang, S. Prescott, T. Tsuzuki, D.S. Rawat, ACS Sustainable Chemistry & Engineering 3(1), 9 (2015); https://doi.org/10.1021/sc500594w.

H.M. Aziz, M.H.K. Al-Mamoori, L.H. Aboud, Journal of Physics: Conference Series 1818, 012206 (2021); https://doi.org/10.1088/1742-6596/1818/1/012206.

R. Zouzelka, M. Remzova, J. Plsek, L. Brabec, J. Rathousky, Catalysts 9, 708 (2019); https://doi.org/10.3390/catal9090708.

F.C. Romeiro, M.A. Rodrigues, L.A.J. Silva, A. C. Catto, L.F. da Silva, E. Longo, E. Nossol, R.C. Lima, Applied Surface Science 423, 743 (2017); https://doi.org/10.1016/j.apsusc.2017.06.221.

S.K. Mandal, K. Dutta, S. Pal, S. Mandal, A. Naskar, P.K. Pal, T.S. Bhattacharya, A. Singha, R. Saikh, S. De, D. Jana, Materials Chemistry and Physics 223, 456 (2019); https://doi.org/10.1016/j.matchemphys.2018.11.002.

R.T. Ngaloy, A.M. Fontanilla, M.S.R. Soriano, C.S. Pascua, Y. Matsushita, I.J.A. Agulo, Journal of Nanotechnology 1895043 (2019); https://doi.org/10.1155/2019/1895043.

S. Kar, K. Chakraborty, T. Pal, S. Ghosh, AIP Conference Proceedings 2265, 030134 (2019); https://doi.org/10.1063/5.0017186.

L. Zhang, X. Zhang, G. Zhang, Z. Zhang, S. Liu, P. Li, Q. Liao, Y. Zhao, Y. Zhang, RSC Advances 5, 10197 (2015); https://doi.org/10.1039/C4RA12591F.

C. Rodwihok, D. Wongratanaphisan, Y.L.T. Ngo, M. Khandelwal, S. H. Hur, J. S. Chung, Nanomaterials 9, 1441 (2019); https://doi.org/10.3390/nano9101441.

A.S. Merlano, F.R. Pérez, R. Cabanzo, E. Mejía, L.M. Hoyos, Á. Salazar, Journal of Physics: Conference Series 1541, 012015 (2020); https://doi.org/10.1088/1742-6596/1541/1/012015.

H. Gao, Y. Ma, P. Song, J. Leng, Q. Wang, Journal of Materials Science: Materials in Electronics 32, 10058 (2021); https://doi.org/10.1007/s10854-021-05664-5.

J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S. Austin Suthanthiraraj, R. Jayavel, D. Nedumaran, Journal of Inorganic and Organometallic Polymers and Materials 28, 2046 (2018); https://doi.org/10.1007/s10904-018-0873-0.

Z. Zhan, L. Zheng, Y. Pan, G. Sun, L. Li, J. Mater. Chem. 22, 2589 (2012); https://doi.org/10.1039/C1JM13920G.

S. Kumar, R.D. Kaushik, G.K. Upadhyay, L.P. Purohit, Journal of Hazardous Materials 406(15), 124300 (2021); https://doi.org/10.1016/j.jhazmat.2020.124300.

P. Dhandapani, M.S. AlSalhi, R. Karthick, F. Chen, S. Devanesan, W. Kim, A. Rajasekar, M. Ahmed, M.J. Aljaafreh, A. Muhammad, Journal of Hazardous Materials 409, 124661 (2021); https://doi.org/10.1016/j.jhazmat.2020.124661.

Z. Alves, C. Nunes, P. Ferreira, Nanomaterials 11, 2149 (2021); https://doi.org/10.3390/nano11082149.

S. Meti, M.R. Rahman, M.I. Ahmad, K.U. Bhat, Applied Surface Science 451, 67 (2018); https://doi.org/10.1016/j.apsusc.2018.04.138.

M. Sreejesh, S. Dhanush, F. Rossignol, H.S. Nagaraja, Ceramics International 43(6), 4895 (2017); https://doi.org/10.1016/j.ceramint.2016.12.140.

S. Sagadevan, J.A. Lett, G.K. Weldegebrieal, S. Garg, W.C. Oh, N.A. Hamizi, M.R. Johan, Catalysts 11, 1008 (2021); https://doi.org/10.3390/catal11081008.

K. Revathi, S. Palantavida, B.K. Vijayan, Materials Today: Proceedings 9, 587 (2019); https://doi.org/10.1016/j.matpr.2018.10.379.

S. Siddique, Z. Abdin, M. Waseem, T. Naseem, A. Bibi, M. Hafeez, S.U. Din, S. Haq, S. Qureshi, Journal of Inorganic and Organometallic Polymers and Materials 31, 1359 (2021); https://doi.org/10.1007/s10904-020-01760-x.

Y. Wang, Z. Wen, H. Zhang, G. Cao, Q. Sun, J. Cao, Catalysts 6, 214 (2016); https://doi.org/10.3390/catal6120214.

R. Eivazzadeh-Keihan, R. Taheri-Ledari, M. S. Mehrabad, S. Dalvand, H. Sohrabi, A. Maleki, S. M. Mousavi-Khoshdel, A.E. Shalan, Energy Fuels 35, 10869 (2021); https://doi.org/10.1021/acs.energyfuels.1c01132.

A.B. Alayande, M. Obaid, I.S. Kim, Materials Science & Engineering C 109, 110596 (2020); https://doi.org/10.1016/j.msec.2019.110596.

Sridevi, B. Balraj, N. Senthilkumar, G.K.D. Prasanna Venkatesan, Journal of Superconductivity and Novel Magnetism 33, 3501 (2020); https://doi.org/10.1007/s10948-020-05594-z.

M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón, G. Cruz-Quesada, J. Rivera-Utrilla, M. Sánchez-Polo, Catalysts 10, 520 (2020); https://doi.org/10.3390/catal10050520.

R.K. Nainani, P. Thakur, Water Science & Technology 73(8), 1927 (2016); https://doi.org/10.2166/wst.2016.039.

S.W. Bokhari, A.H. Siddique, X. Yue, H. Singh, M.D. Hayat, W. Gao, International Journal of Energy Research 44(14), 12197 (2020); https://doi.org/10.1002/er.5864.

M.S.A.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, ACS Applied Materials & Interfaces 4, 3893 (2012); https://doi.org/10.1021/am301287m.

L. Yu, L. Wang, X. Sun, D. Ye, Journal of Environmental Sciences 73, 138 (2018); https://doi.org/10.1016/j.jes.2018.01.022.

Y. Liu, RSC Advances 4, 36040 (2014); https://doi.org/10.1039/C4RA06342B.

J.F. Leal, S.M.A. Cruz, B.T.A. Almeida, V.I. Esteves, P.A.A.P. Marques, E.B.H. Santos, Environmental Science: Water Research & Technology 6, 1018 (2020); https://doi.org/10.1039/C9EW00950G.

H. Xiao, T. Wang, Journal of Physics and Chemistry of Solids 154, 110100 (2021); https://doi.org/10.1016/j.jpcs.2021.110100.

N. Meng, S. Zhang, Y. Zhou, W. Nie, P. Chen, RSC Advances 5, 70968 (2015); https://doi.org/10.1039/C5RA13574E.

S.A. Bhat, M.A. Rather, S.A. Pandit, P.P. Ingole, M.A. Bhat, Analyst 140, 5601 (2015); https://doi.org/10.1039/C5AN00740B.

M. Iqbal, Z. Abdin, T. Naseem, M. Waseem, S.U. Din, M. Hafeez, S. Haq, S. Qureshi, A. Bibi, S.U. Rehman, R. Hussain, Journal of Inorganic and Organometallic Polymers and Materials 31, 100 (2021); https://doi.org/10.1007/s10904-020-01680-w.

T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Scientific Reports 5, 11873 (2015); https://doi.org/10.1038/srep11873.

S. Sinha, N.A. Devi, S. Nongthombam, R. Bhujel, S. Rai, G. Sarkar, B.P. Swain, Diamond & Related Materials 107, 107885 (2020); https://doi.org/10.1016/j.diamond.2020.107885.

M. Sharma, M.K. Patra, S.K. Jain, Journal of Nanostructures 9(3): 547 (2019); https://doi.org/10.22052/JNS.2019.03.016.

J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chemical Communications 46, 1112 (2010); https://doi.org/10.1039/B917705A.

Y.T. Khoo, International Journal of Engineering Applied Sciences and Technology 5(4), 1 (2020);

https://ijeast.com/papers/1-12,Tesma504,IJEAST.pdf.

A.N. Popova, Coke and Chemistry 60(9), 361 (2017) (https://doi.org/10.3103/S1068364X17090058).

Ahmad, J.E. McCarthy, A. Baranov, Y.K. Gun’ko, Materials 8, 5953 (2015); https://doi.org/10.3390/ma8095284.

Downloads

Published

2022-03-13

How to Cite

Avar, B., & Panigrahi, M. (2022). Synthesis and Characterization of Binary Reduced Graphene Oxide/Metal Oxide Nanocomposites: Array. Physics and Chemistry of Solid State, 23(1), 101–112. https://doi.org/10.15330/pcss.23.1.101-112

Issue

Section

Scientific articles (Physics)