Electroconductive properties of carbon biocomposites formed by the deposition method

Authors

  • Andrii Hrubiak G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine
  • Volodymyr Moklyak G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine; Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
  • Yurii Yavorsky National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
  • Bogdan Onuskiv Ivano-Frankivsk Scientific Research Forensic Center of the Ministry of Internal Affaris of Ukraine, Ivano-Frankivsk, Ukraine
  • Volodymyr Chelyadyn G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine
  • Miroslav Karpets National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
  • Maria Moklyak G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine; Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Natalia Ivanichok G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine; Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Nazar Ilnitsky Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.2.302-310

Keywords:

carbon-containing biocomposites, electrical conductivity, activation energy, functional groups

Abstract

The temperature-frequency dependences of the electrical conductivity for biocomposite formed systems are obtained, and the influence of the carbon temperature type on the changes of the electrically conductive systems is observed. It has been established that the electrical conductivity at a direct current of 1.2 Ohm-1 • m-1 is formed for CNT/aspartate biocomposites. Such electrical conductivity is weakly dependent on frequency. The temperature dependence of the conductivity of CNT/aspartate allowed to set the activation energy at the level of Eg=0,037 eV, which indicates the predominant role of the mechanism of translucency. For biocomposites, TEG / aspartate obtained by ultrasonic dispersion of components in an aqueous medium, the nature of the frequency dependences of the electrical conductivity reflects the combination of the inputs in the material of two component components with different types of mechanisms. Namely: electronic for the carbon temperature and semiconductor for the organic component. This type of dependence at lower temperatures is due to the desorption of water molecules from the surface, through which the charge is transferred by the migration of the proton to the hydroxyl groups. The next increase in temperature causes the activation of electrons and their contribution to the electrical conductivity of the biocomposite. For the TEG / aspartate biocomposite, the calculated value of activation energy will be 0.170 eV.

References

V. Moklyak, A. Hrubiak, Z. Gogitidze, Y. Yavorskyi, Biopolimer Peptide Batteries—A New Concept for Environmentally Friendly and Safer Energy Storage, Batteries 7(3), 50 (2021); https://doi.org/10.3390/batteries7030050.

G. Rosenman, P. Beker, I. Koren, M. Yevnin, B. Bank-Srour, E. Mishina, S. Semin, Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications, J. Pept. Sci. 17, 75 (2010); https://doi.org/10.1002/psc.1326.

J. Bitenc, K. Pirnat, G. Mali, B. Novosel, A.R. Vitanova, R. Dominko, Poly(hydroquinoyl-benzoquinonyl sulfide) as an active material in Mg and Li organic batteries , Electrochem. Commun. 69, 1 (2016); https://doi.org/10.1016/j.elecom.2016.05.009.

J. Ryu, S.-W. Kim, K. Kang, C.B. Park, Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage, ACS Nano 4, 159 (2009); https://doi.org/10.1021/nn901156w.

Nam Ki Tae, P. Yoo, N. Chungyi Chiang, P. Meethong, Y. Hammond, A. Chiang, Belcher, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Science 312(5775), 885 (2006); https://doi.org/10.1126/science.1122716.

Ryu Jungki, Sung-Wook Kim, Kisuk Kang, Chan Beum Park, Mineralization of self‐assembled peptide nanofibers for rechargeable lithium ion batteries, Adv. Mater. 22(48), 5537 (2010); https://doi.org/10.1002/adma.201000669.

V.I. Mandzyuk, N.I. Nagirna, & R.P. Lisovskyy, Morphology and Electrochemical Properties of Thermal Modified Nanoporous Carbon as Electrode of Lithium Power Sources, Journal of Nano-& Electronic Physics 6(1), (2014).

V.O. Kotsyubynsky, A.B., Grubiak, V.V. Moklyak, V.M. Pylypiv, & R.P. Lisovsky, Structural, morphological, and magnetic properties of the mesoporous maghemite synthesized by a citrate method, Metallofiz. Noveishie Tekhnol 36, 1497 (2016).

Lee Yun Jung & Angela M. Belcher, Nanostructure design of amorphous FePO 4 facilitated by a virus for 3 V lithium ion battery cathodes, J. Mater. Chemistry 21(4), 1033 (2011); https://doi.org/10.1039/C0JM02544E.

Koveria, A., Kieush, L., Hrubiak, A. B., Kotsyubynsky, V. O. Properties of Donetsk basin hard coals and the products of their heat treatment revealed via Mossbauer spectroscopy, Petroleum and Coal 61(1), 160 (2019).

Hemiy, O. M., Yablon, L. S., Budzulyak, I. M., Budzulyak, S. I., Morushko, O. V., & Kachmar, A. I., Electrochemical properties of nanocomposite nanoporous carbon / nickel hydroxide, Journal of Nano-& Electronic Physics 8(4), 04074, (2016); https://doi.org/10.21272/jnep.8(4(2)).04074.

P. Beker, I. Koren, N. Amdursky, E. Gazit, & G. Rosenman, Bioinspired peptide nanotubes as supercapacitor electrodes, Journal of Materials Science 45(23), 6374 (2010); https://doi.org/10.1007/s10853-010-4624-z.

V.O. Kotsyubynsky, I.F. Myronyuk, V.L. Chelyadyn, A.B. Hrubiak, V.V. Moklyak, & S.V. Fedorchenko, The effect of sulphate anions on the ultrafine titania nucleation, Nanoscale Research Letters 12(1), 1 (2017); https://doi.org/10.1186/s11671-017-2144-3.

L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, E. Gazit, Vapor-deposited self-assembled peptide nano-array for energy storage and microfluidics devices, Nature nanotechnology 4(12), 849 (2009); https://doi.org/10.1038/nnano.2009.298.

V.I. Nefedov, V.I. Khakhin, V.K. Bityukov, Metrology and radio measurements: a textbook for universities (Higher school, Moscow, 2003).

A.B. Hrubiak, V.O. Kotsyubynsky, V.V. Moklyak, B.K. Ostafiychuk, P.I. Kolkovsky, S.V. Fedorchenko, & B.I. Rachiy, The electrical conductivity and photocatalytic activity of ultrafine iron hydroxide/oxide systems, Molecular Crystals and Liquid Crystals 670, 97 (2018); https://doi.org/10.1080/15421406.2018.1542070.

M. V. Muftakhov, & P.V. Shchukin, Destruction of peptides and nucleosides in reactions with low energy electrons, Journal of Technical Physics 88(5), 770 (2018); https://doi.org/10.21883/JTF.2018.05.45907.2425.

A.S. Karnup, V.N. Uversky, & N. Medvedkin, Synthetic polyamino acids and polypeptides. N-carboxyanhydride method, Bioorganic Chemistry 22(8), 563 (1996).

M. Lebovka, A. Gohakhakak, Yu. Boyko, L. Lisetsky, G. Puchkvska, T. Gaverlko, M. Drazd, Ryky Crystal. Nanosi, nanotechnology, 2009.

E. Fitzer, K.H. Kochling, H.PBoehm, & H. Marsh, Recommended terminology for the description of carbon as a solid, Pure and Applied Chemistry 67(3), 473 (1995).

G.B. Chernobay, Yu.A. Chesalov, E.B. Burgina, T.N. Drebuschak, E.V. Boldfeva, Temperature effects on the IR spectra of crystalliine amino acids, dipeptides, and polyamino acids. I. Glycine, Journal of Structural Chemistry 48(2), 339 (2007).

Published

2022-06-12

How to Cite

Hrubiak, A., Moklyak, V., Yavorsky, Y., Onuskiv, B., Chelyadyn, V., Karpets, M., … Ilnitsky, N. (2022). Electroconductive properties of carbon biocomposites formed by the deposition method. Physics and Chemistry of Solid State, 23(2), 302–310. https://doi.org/10.15330/pcss.23.2.302-310

Issue

Section

Scientific articles (Physics)