Вплив методів синтезу та порівняльне дослідження структурних властивостей мікро- та наноферитів
DOI:
https://doi.org/10.15330/pcss.24.1.77-83Ключові слова:
ферити, XRD, твердотільний метод синтезу, метод співосадженняАнотація
Зразки фериту Mn(x)Zn(1-x)Fe2O4 із x = 0,4 та 0,6 синтезовано твердотільним методом і методом спів-осадження. Щоб визначити вплив різних концентрацій (x) на структуру фериту, розмір частинок і кристалічні фази, підготовлені зразки аналізували за допомогою рентгенівської дифракції (XRD). Рентгенограми показали, що синтезовані зразки мають однофазну структуру кубічної шпінелі. Аналіз FTIR показав, що для обох методів синтезу характерною є смуга поглинання в діапазоні від 400 до 1000 см-1. Аналіз SEM показує надзвичайну однорідність усіх зразків. Для дослілження Mn0,4Zn0,6Fe204 використовували EDX аналіз. Приготовані феритові порошки містять Mn, Zn і Fe, як було показано в обох методах синтезу. У цьому дослідженні пропонуються альтернативні шляхи синтезу цих феритів, щоб обійти деякі обмеження традиційного методу приготування.
Посилання
K.P Mudholakar, S. TambeVinaykumar, S.S Kakati, S. N. Mathad., Effect of Sintering condition on Magnetization and Microstructure of CuxCo(1-x)Fe2O4 Ferrites, Int. J. Adv. Sci. Eng, 9(2), 2678 (2022); https://doi.org/10.29294/IJASE.9.2.2022.2678-2685.
R. S. Totagi, N. J. Choudhari, S. S. Kakati, C. S. Hiremath, S. B. Koujalagi, and R. B. Pujar, Electrical properties of Ni-Mg-Cu nanoferrites synthesized by sucrose precursor technique, Scholars Research Library Der Pharma Chemica, 7 (3), 11 (2015); Accessed: Feb. 21, 2023.
S. S. Gandhad, P. M. Patil, S. N. Mathad, L. v. Hublikar, P. R. Jeergal, and R. B. Pujar, Effect of Aluminum Doping on Structural and Mechanical Properties of Ni–Mg Ferrites, International Journal of Self-Propagating High-Temperature Synthesis, 28(4), 271 (2019); https://doi.org/10.3103/S1061386219040046/FIGURES/3.
A. Kumar, S. Molakeri, S. Kalyane, A. B. Kulkarni, and S. N. Mathad, Elastic Properties of Nickel Ferrite Synthesized by Combustion and Microwave Method using FT-IR Spectra, Int. J. Adv. Sci. Eng, 3 (422), (2017), Accessed: Feb. 21, 2023.
M. R. Patil, M. K. Rendale, S. N. Mathad, and R. B. Pujar, FTIR Spectra and Elastic Properties of Cd-Substituted Ni-Zn Ferrites 1, International Journal of Self-Propagating High-Temperature Synthesis, 26(1), 33 (2017), https://doi.org/10.3103/S1061386217010083.
S. S. Yattinahalli, S. B. Kapatkar, N. H. Ayachit, and S. N. Mathad, Synthesis and structural characterization of nanosized nickel ferrite, International Journal of Self-Propagating High-Temperature Synthesis, 22 (3), 147 (2013); https://doi.org/10.3103/S1061386213030114/METRICS.
S. N. Adarakatti V S Pattar P K Korishettar, B V Grampurohit, S. N. Mathad. A B Kulkarni, Synthesis, structural and electrical studies of li-ni-cu nano ferrites, Acta Chemica Iasi, 26 (1), 1 (2018); https://doi.org/10.2478/achi-2018-0001.
Shashidhargouda. H. R. and S. N. Mathad, Synthesis and structural analysis of Ni0.45 Cu0.55 Mn2O4 by Williamson–Hall and size–strain plot methods, Ovidius University Annals of Chemistry, 29 (2), 122 (2018); https://doi.org/10.2478/AUOC-2018-0018.
S. Vijaykumar, V. R. Hiremath, S. K. Sushant, and S. N. Mathad, Synthesis, Characterization and Evaluation of δ-Al2O3 Nanoparticles Prepared by Chemical Method with Variation of pH, Journal of Nano- and Electronic Physics, 14 (3), 3027 (2022); https://doi.org/10.21272/JNEP.14(3).03027.
S. Kakati, M. K. Rendale, and S. N. Mathad, Synthesis, Characterization, and Applications of CoFe2O4 and M-CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) Ferrites: A Review, International Journal of Self-Propagating High-Temperature Synthesis, 30(4), 189 (2021); https://doi.org/10.3103/S1061386221040038.
S. S. Yattinahalli, S. B. Kapatkar, and S. N. Mathad, Review of Nanoscience Materials and its applications, Research Journal of Engineering and Technology, 7(3), 121 (2016); https://doi.org/10.5958/2321-581X.2016.00024.6.
S. S. Yattinahalli, S. B. Kapatkar, and S. N. Mathad, Structural and Mechanical Properties of a Nano Ferrite, Advanced Science Focus, 2(1), 42 (2014); https://doi.org/10.1166/ASFO.2014.1079.
A. B. Kulkarni and S. N. Mathad, Effect of Sintering Temperature on Structural Properties of Cd doped Co-Zn Ferrite, Journal of Nano- and Electronic Physics, 10(1), 1001 (2018); https://doi.org/10.21272/JNEP.10(1).01001.
R. M. Shedam, A. M. Bagwan, S. N. Mathad, A. B. Gadkari, M. R. Shedam, and R. G. Sonkawade, Nd3+ added Mg–Cd ferrite material study the thick film gas sensing properties, Mater Chem Phys, 293, 126871 (2023); https://doi.org/10.1016/j.matchemphys.2022.126871.
R. M. Shedam, P. P. Kashid, S. N. Mathad, R. B. Deshmukh, M. R. Shedam, and A. B. Gadkari, Ferrites gas sensors: A Review, Physics and Chemistry of Solid State, 23(3), 626 (2022); https://doi.org/10.15330/PCSS.23.3.626-640.
S. U. Durgadsimi, V. R. Kattimani, N. S. Maruti, A. B. Kulkarni, and S. N. Mathad, Synthesis and structural analysis of nickel ferrite synthesized by co-deposition, Eurasian Physical Technical Journal, 18(4) (38), 14-19 (2021); https://doi.org/10.31489/2021NO4/14-19.
R. Y. Kolekar, S. B. Kapatkar, and S. N. Mathad, Nickel-Doped Cobalt Zinc Ferrites Co0.8–xNixZn0.2Fe2O4(x=0.0–0.56) by Solid-State Reaction: Synthesis and Characterization, International Journal of Self-Propagating High-Temperature Synthesis, 29(4), 196 (2020); https://doi.org/10.3103/S1061386220040044/FIGURES/5.
R. Vishwarup and S. N. Mathad, Facile Synthesis of Nano Mg-Co Ferrites (x=0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) via Co-precipitation Route: Structural Characterization, Materials International, 2(4) 0471-0476 (2020); https://doi.org/10.33263/Materials24.471476.
M. B. Tahir, T. Iqbal, A. Hassan, and S. Ghazal, Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization, J InorgOrganometPolym Mater, 27 (5), 1430 (2017); https://doi.org/10.1007/S10904-017-0598-5/FIGURES/7.
P. Zsabka, G. Leinders, A. Baena, T. Cardinaels, K. Binnemans, and M. Verwerft, Synthesis of gadolinium-doped thorium dioxide via a wet chemical route: Limitations of the co-precipitation method, Journal of Nuclear Materials, 489, 211 (2017); https://doi.org/10.1016/J.JNUCMAT.2017.03.052.
Z. Zhang, Y. Liu, G. Yao, G. Zu, and Y. Hao, Synthesis and Characterization of NiFe2O4 Nanoparticles via Solid-State Reaction, Int J Appl Ceram Technol, 10(1), 142 (2013); https://doi.org/10.1111/J.1744-7402.2011.02719.X.
P. Parhi, T. N. Karthik, and V. Manivannan, Synthesis and characterization of metal tungstates by novel solid-state metathetic approach, J Alloys Compd, 465(1-2), 380 (2008); https://doi.org/10.1016/J.JALLCOM.2007.10.089.
S. Mathad, Solid-State Synthesis and Structural Features of Li0.5Ni0.75-x/2Znx/2Fe2O4 Ferrites, International Journal of Self-Propagating High-Temperature Synthesis, (2019); https://doi.org/10.3103/S1061386219010060.
J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. Ríos, and F. J. Berry, Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study, J Solid State Chem, 153(1), 74 (2000); https://doi.org/10.1006/JSSC.2000.8749.
S. S. Kakati, T. M. Makandar, M. K. Rendale, and S. N. Mathad, Green Synthesis Approach for Nanosized Cobalt Doped Mg–Zn through Citrus Lemon Mediated Sol–Gel Auto Combustion Method, International Journal of Self-Propagating High-Temperature Synthesis, 31(3), 131 (2022); https://doi.org/10.3103/S1061386222030049/TABLES/2.
S. Kazi, S. Feeda. S. S. Kakati, S. N. Mathad, S. L. Galgali, M. K. Rendale, Sintering Temperature Dependent Structural and Mechanical Studies of BaxPb1−xTiO3 Ferroelectrics, Journal of Nano- and Electronic Physics, 12(4), 4018 (2020); https://doi.org/10.21272/JNEP.12(4).04018.
M. C. Dimri, S. C. Kashyap, D. C. Dube, and S. K. Mohanta, Complex permittivity and permeability of Co-substituted NiCuZn ferrite at rf and microwave frequencies, J. Electroceram., 16(4), 331 (2006); https://doi.org/10.1007/s10832-006-9874-4.
R. Sen, P. Jain, R. Patidar, S. Srivastava, Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method, Elsevier, 2, 3750 (2015); https://doi.org/10.1016/j.matpr.2015.07.165.
G. Padmapriya, A. Manikandan, V. Krishnasamy, S. K. Jaganathan, and S. A. Antony, Enhanced Catalytic Activity and Magnetic Properties of Spinel MnxZn1−xFe2O4(0.0 ≤ x ≤ 1.0) Nano-Photocatalysts by Microwave Irradiation Route, J Supercond Nov Magn, 29 (8), 2141 (2016); https://doi.org/10.1007/S10948-016-3527-X.
L. C. Shidaganal, A. B. Kulkarni, S. B. Kapatkar, S. N. Mathad, and R. B. Pujar, Al-Doped Co-Cd Nanoferrites by Solution-Combustion Synthesis: Preparation and Structural Characterization, International Journal of Self-Propagating High-Temperature Synthesis, 29(3), 176 (2020); https://doi.org/10.3103/S1061386220030103.
R. D. Waldron, Infrared spectra of ferrites, Physical Review, 99(6), 1727 (1955); https://doi.org/10.1103/PHYSREV.99.1727.
M. K. Rendale, S. N. Mathad, and V. Puri, Structural, mechanical and elastic properties of Ni0.7-xCoxZn0.3Fe2O4 nano-ferrite thick films, Microelectronics International, 34(2), 57 (2017); https://doi.org/10.1108/MI-02-2016-0009/FULL/HTML.
S. L. Galagali et al., Fourier transform infrared spectroscopy and elastic properties of Mg1-xCdxFe2O4 ferrite systems., Thaiscience.info, 41(5), 992 (2023).
M. Patil, M. Rendale, S. Mathad, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, International Journal of Self-Propagating High-Temperature Synthesis, 26(1), 33 (2017); https://doi.org/10.3103/S1061386217010083.
Ied Mohammed Mnawe , M. Y. Hassaan , Osama Mohmaed Hemeda , A.S. Abdel-Moety, XRD, FTIR and electrical properties investigation Of Ni0.6Zn0.4 CrxFe2-XO4 thin films, NVEO, 9(1), 1617 (2022).