Теоретичні та експериментальні дослідження ширини забороненої зони бінарних нанокомпозитів ZnS-CdS як найкращих очікуваних фотокаталізаторів
DOI:
https://doi.org/10.15330/pcss.26.2.240-250Ключові слова:
Гідротермальний метод, фотокаталітична активність, родамін B, енергетчна щілинаАнотація
Нанокомпозити ZnS-CdS синтезовано гідротермічним методом для дослідження їхньої фотокаталітичної активності. Результати рентгенівської дифракції (XRD) підтвердили формування гексагональної структури нанокомпозитів сульфіду кадмію та сульфіду цинку, а результати скануючої електронної спектроскопії (SEM) показали, що при додаванні ZnS до структури сульфіду кадмію розмір наночастинок зменшується, що є чіткою ознакою покращеної фотокаталітичної активності. Використовуючи коефіцієнт поглинання та УФ-видиму спектроскопію (УФ), визначено ширину забороненої зони чистого CdS на рівні 2,7 еВ; при додаванні вмісту Zn ширина забороненої зони зменшується. Фотокаталітичну активність отриманих нанокомпозитів вивчали шляхом фотодеградації органічного барвника родаміну B (RhB). Синтезований зразок з 0,1 М розчином цинку показав менші ширину та розмір. На наступному етапі було змодельовано наночастинки сульфіду кадмію з різним відсотковим вмістом цинку, а їхні ширини HOMO-LUMO розраховано за допомогою теорії функціоналу густини (DFT). Порівняно з іншими відомими функціоналами, виявлено, що M05 демонструє кращу відповідність з експериментальними результатами. Результати обчислень підтверджують, що зразок з 10% вмістом цинку є хорошим кандидатом для фотокаталітичної активності.
Посилання
C.E. de Moura, et al., Experimental and theoretical study of resonant core-hole spectroscopies of gas-phase free-base phthalocyanine. Physical Chemistry Chemical Physics, 25(22), 15555 (2023); https://doi.org/10.1039/D3CP01746J.
I.R. Ariyarathna, Wavefunction theory and density functional theory analysis of ground and excited electronic states of TaB and WB. Physical Chemistry Chemical Physics, 26(35), 22858 (2024); https://doi.org/10.1039/D4CP02202E.
V. Sokolovskiy, et al., Meta-GGA SCAN functional in the prediction of ground state properties of magnetic materials: Review of the current state. Metals, 13(4), 728 (2023); https://doi.org/10.3390/met13040728.
W. Kohn, A.D. Becke, and R.G. Parr, Density functional theory of electronic structure. The journal of physical chemistry, 100(31), 12974 (1996); https://doi.org/10.1021/jp960669l.
G.E. Scuseria, and V.N. Staroverov, Progress in the development of exchange-correlation functionals, in Theory and applications of computational chemistry. Elsevier. 669-724. (2005).
P. Mori-Sánchez, A.J. Cohen, and W. Yang, Many-electron self-interaction error in approximate density functionals. The Journal of chemical physics, 125(20), 201102 (2006); https://doi.org/10.1063/1.2403848.
T. Sato, T. Tsuneda, and K. Hirao, Long-range corrected density functional study on weakly bound systems: Balanced descriptions of various types of molecular interactions. The Journal of chemical physics, 126(23), 234114 (2007); https://doi.org/10.1063/1.2747243.
Y. Zhao, and D.G. Truhlar, Density functionals with broad applicability in chemistry. Accounts of chemical research, 41(2), 157 (2008); https://doi.org/10.1021/ar700111a.
J.M. Crowley, J. Tahir-Kheli, and W.A. Goddard III, Resolution of the band gap prediction problem for materials design. The journal of physical chemistry letters, 7(7), 1198 (2016); https://doi.org/10.1021/acs.jpclett.5b02870.
L. Qiao, et al., Nature of the band gap and origin of the electro-/photo-activity of Co 3 O 4. Journal of Materials Chemistry C, 1(31), 4628 (2013); https://doi.org/10.1039/C3TC30861H.
K. Takarabe, et al., Electronic structure of C2N2X (X= O, NH, CH2): Wide band gap semiconductors. Journal of Applied Physics, 112(1), 013537 (2012); https://doi.org/10.1063/1.4731749.
M. Schlüter, and L. Sham, Density-functional theory of the band gap, in Advances in quantum chemistry. Elsevier. 21, 97 (1990); https://doi.org/10.1016/S0065-3276(08)60593-6.
J.K. Perry, J. Tahir-Kheli, and W.A. Goddard III, Antiferromagnetic band structure of la 2 cuo 4: Becke-3–lee-yang-parr calculations. Physical Review B, 63(14), 144510 (2001); https://doi.org/10.1103/PhysRevB.63.144510.
A. Seidl, et al., Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B, 53(7), 3764 (1996); https://doi.org/10.1103/PhysRevB.53.3764.
J. Muscat, A. Wander, and N. Harrison, On the prediction of band gaps from hybrid functional theory. Chemical Physics Letters, 342(3-4), 397 (2001); https://doi.org/10.1016/S0009-2614(01)00616-9.
J. Heyd, et al., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of chemical physics, 123(17), 174101 (2005); https://doi.org/10.1063/1.2085170.
A.J. Cohen, P. Mori-Sánchez, and W. Yang, Fractional charge perspective on the band gap in density-functional theory. Physical Review B—Condensed Matter and Materials Physics, 77(11); 115123 (2008); https://doi.org/10.1103/PhysRevB.77.115123.
A.J. Garza, and G.E. Scuseria, Predicting band gaps with hybrid density functionals. The journal of physical chemistry letters, 7(20), 4165 (2016); https://doi.org/10.1021/acs.jpclett.6b01807.
J.P. Perdew, et al., Understanding band gaps of solids in generalized Kohn–Sham theory. Proceedings of the national academy of sciences, 114(11), 2801 (2017); https://doi.org/10.1073/pnas.1621352114.
M.K. Chan, and G. Ceder, Efficient band gap prediction for solids. Physical review letters, 105(19), 196403 (2010); https://doi.org/10.1103/PhysRevLett.105.196403.
J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, 118(18), 8207 (2003); https://doi.org/10.1063/1.1564060.
J.E. Moussa, P.A. Schultz, and J.R. Chelikowsky, Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space. The Journal of chemical physics, 136(20), 204117 (2012); https://doi.org/10.1063/1.4722993.
H. Xiao, J. Tahir-Kheli, and W.A. Goddard III, Accurate band gaps for semiconductors from density functional theory. The Journal of Physical Chemistry Letters, 2(3), 212 (2011); https://doi.org/10.1021/jz101565j.
S.U. Hong, et al., Density functional theory calculations for the band gap and formation energy of Pr4−xCaxSi12O3+xN18−x a highly disordered compound with low symmetry and a large cell size. Physical Chemistry Chemical Physics, 19(25) 16702 (2017); https://doi.org/10.1039/C7CP03247A.
B.J. Abdullah, Size effect of band gap in semiconductor nanocrystals and nanostructures from density functional theory within HSE06. Materials Science in Semiconductor Processing, 137, 106214 (2022); https://doi.org/10.1016/j.mssp.2021.106214.
A. Kumar, and G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J, 1(3), 106 (2017); 10.15406/mseij.2017.01.00018.
F.T. Geldasa, et al., Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC advances, 13(27), 18404 (2023); https://doi.org/10.1039/D3RA01505J.
L. Lianmawii, et al., A review: photocatalytic degradation of dyes by metal sulfide nanoparticles. Brazilian Journal of Chemical Engineering, 1 (2024); https://doi.org/10.1007/s43153-023-00425-9.
N. Kozhevnikova, et al., Janus ZnS nanoparticles: Synthesis and photocatalytic properties. Journal of Physics and Chemistry of Solids, 161, 110459 (2022); https://doi.org/10.1016/j.jpcs.2021.110459.
H. Abdulelah, et al., Photocatalytic Activity to Remove the Effect of Methylene Blue Dye by Using CdS Nanocrystalline under Visible Light. Journal of Nanostructures, 14(2), 370 (2024); https://doi.org/10.22052/JNS.2024.02.002.
A. Hernández-Gordillo, F. Tzompantzi, and R. Gómez, An efficient ZnS-UV photocatalysts generated in situ from ZnS (en) 0.5 hybrid during the H2 production in methanol–water solution. International journal of hydrogen energy, 37(22), 17002 (2012); https://doi.org/10.1016/j.ijhydene.2012.08.097.
Z.K. Heiba, et al., Influence of (Mn or Co)-doping on structural, magnetic and electronic properties of nano Zn0. 75Cd0. 25S. Chinese Journal of Physics, 67, 414 (2020); https://doi.org/10.1016/j.cjph.2020.04.010.
M. Khodamorady, and K. Bahrami, A novel ZnS-CdS nanocomposite as a visible active photocatalyst for degradation of synthetic and real wastewaters. Scientific Reports, 13(1), 2177 (2023); https://doi.org/10.1038/s41598-023-28725-7.
I. Devadoss, P. Sakthivel, and A. Krishnamoorthy, Band gap tailoring and photoluminescence performance of Cds quantum dots for white LED applications: Influence of Ba 2+ and Zn 2+ ions. Journal of Materials Science: Materials in Electronics, 32, 5729 (2021); https://doi.org/10.1007/s10854-021-05293-y.
P. Baláž, et al., CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues. Materials Science and Engineering: C, 58, 1016 (2016); https://doi.org/10.1016/j.msec.2015.09.040.
I. Vamvasakis, E.K. Andreou, and G.S. Armatas, Mesoporous Dual-Semiconductor ZnS/CdS Nanocomposites as Efficient Visible Light Photocatalysts for Hydrogen Generation. Nanomaterials, 13(17), 2426 (2023); https://doi.org/10.3390/nano13172426.
N. Prasad, and B. Karthikeyan, Phase-dependent structural, optical, phonon and UV sensing properties of ZnS nanoparticles. Nanotechnology, 30(48), 485702 (2019); https://doi.org/10.1088/1361-6528/ab3cbf.
R. Tripathi, et al., Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(2), 025006 (2014); https://doi.org/10.1088/2043-6262/5/2/025006.
J. Kiwi, and V. Nadtochenko, New evidence for TiO2 photocatalysis during bilayer lipid peroxidation. The Journal of Physical Chemistry B, 108(45), 17675 (2004); https://doi.org/10.1021/jp048281a.
G. Martínez-Castañón, Synthesis of CdS nanoparticles: a simple method in aqueous media. Advances in Technology of Materials and Materials Processing Journal(ATM), 7(2), 171 (2005).
N. Soltani, et al., Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. International journal of molecular sciences, 13(10), 12242 (2012); https://doi.org/10.3390/ijms131012242.
D. Sudha, and P. Sivakumar, Review on the photocatalytic activity of various composite catalysts. Chemical Engineering and Processing: Process Intensification, 97, 112 (2015). https://doi.org/10.1016/j.cep.2015.08.006.
D. Li, et al., Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 546 (2020); https://doi.org/10.3390/nano10030546.
S. Fakhri-Mirzanagh, et al., The effect of graphene oxide content on the photocatalytic activity of (ZnCdS/MnFe2O4/GO) nanocomposite. Physica B: Condensed Matter, 685, 415974 (2024); https://doi.org/10.1016/j.physb.2024.415974.
I. Matsuura, M. ImaizumI, and M. Sugiyama, Method of kinetic analysis of photodegradation: nifedipine in solutions. Chemical and pharmaceutical bulletin, 38(6), 1692 (1990); https://doi.org/10.1248/cpb.38.1692.
M.L. Jabbar, and K.J. Kadhim, Electronic properties of doped graphene nanoribbon and the electron distribution contours: A DFT study. Russian Journal of Physical Chemistry B, 15, 46 (2021); https://doi.org/10.1134/S1990793121010188.
H Muzel, M., A.S. Alwan, and M.L. Jabbar, Electronical Properties for (CxHyZ2-NO) Nanoclusters. Current Nanomaterials, 2(1), 33 (2017); https://doi.org/10.2174/2405461502666170227121949.
M.L. Jabbar, and K.J. Kadhim. Linear & nonlinear optical properties of undoped & doped graphene nanoribbon via TD-DFT study. in AIP Conference Proceedings. 2020. AIP Publishing.
C. Kittel, and P. McEuen, Introduction to solid state physics. 2018: John Wiley & Sons.
D. Bharti, A.V. Bharati, and A.V. Wankhade, Synthesis, characterization and optical property investigation of CdS nanoparticles. Luminescence, 33(8), 1445 (2018); https://doi.org/10.1002/bio.3572
N. Goodarzi, et al., Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102 (2023); https://doi.org/10.3390/catal13071102.
K.J. Kuipers, and S.J. Hysom, Common problems and solutions in experiments, in Laboratory experiments in the social sciences. Elsevier. 145 (2014).
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 S. Fakhri-Mirzanagh, S.H.R. Shojaei, G. R. Pirgholi-Givi, Y. Azizian-Kalandaragh

Ця робота ліцензованаІз Зазначенням Авторства 3.0 Міжнародна.





