The limiting oscillations of continuous functions

Authors

  • O.V. Maslyuchenko Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
  • D.P. Onypa Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
https://doi.org/10.15330/cmp.7.2.191-196

Keywords:

limiting oscillation, discreetly attainable space, upper semicontinuous function
Published online: 2015-12-14

Abstract

We prove that for any upper semicontinuous function f:F[0;+]f:F[0;+] defined on the boundary F=¯GGF=¯¯¯¯GG of some open set GG in metrizable space XX there is a continuous function g:GR such that the limiting oscillation ˜ωg of it equals f.

How to Cite
(1)
Maslyuchenko, O.; Onypa, D. The Limiting Oscillations of Continuous Functions. Carpathian Math. Publ. 2015, 7, 191-196.