Divisor problem in special sets of Gaussian integers

Authors

  • O.V. Savastru Odessa I.I. Mechnikov National University, 2 Dvoryanskaya str., 65082, Odessa, Ukraine
https://doi.org/10.15330/cmp.8.2.305-312

Keywords:

Gaussian numbers, divisor problem, asymptotic formula, arithmetic progression
Published online: 2016-12-30

Abstract

Let $A_{1}$ and $A_{2}$ be fixed sets of gaussian integers. We denote by $\tau_{A_{1}, A_{2}}(\omega)$ the number of representations of $\omega$ in form $\omega=\alpha\beta$, where $\alpha \in A_{1}, \beta \in A_{2}$. We construct the asymptotical formula for summatory function $\tau_{A_{1}, A_{2}}(\omega)$ in case, when $\omega$ lie in the arithmetic progression, $A_{1}$ is a fixed sector of complex plane,  $A_{2}=\mathbb{Z}[i]$.

Article metrics
How to Cite
(1)
Savastru, O. Divisor Problem in Special Sets of Gaussian Integers. Carpathian Math. Publ. 2016, 8, 305-312.