On convergence criteria for branched continued fraction

Authors

https://doi.org/10.15330/cmp.12.1.157-164

Keywords:

convergence, convergence region, convergence speed estimate, branched continued fraction
Published online: 2020-06-12

Abstract

The starting point of the present paper is a result by E.A. Boltarovych (1989) on convergence regions, dealing with branched continued fraction \[\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^N\frac{a_{i(2)}}{1}{\atop+}\ldots{\atop+}\sum_{i_n=1}^N\frac{a_{i(n)}}{1}{\atop+}\ldots,\] where $|a_{i(2n-1)}|\le\alpha/N,$ $i_p=\overline{1,N},$ $p=\overline{1,2n-1},$ $n\ge1,$ and for each multiindex $i(2n-1)$ there is a single index $j_{2n},$ $1\le j_{2n}\le N,$ such that $|a_{i(2n-1),j_{2n}}|\ge R,$ $i_p=\overline{1,N},$ $p=\overline{1,2n-1},$ $n\ge1,$ and $|a_{i(2n)}|\le r/(N-1),$ $i_{2n}\ne j_{2n},$ $i_p=\overline{1,N},$ $p=\overline{1,2n},$ $n\ge1,$ where $N>1$ and $\alpha,$ $r$ and $R$ are real numbers that satisfying certain conditions. In the present paper conditions for these regions are replaced by $\sum_{i_1=1}^N|a_{i(1)}|\le\alpha(1-\varepsilon),$ $\sum_{i_{2n+1}=1}^N|a_{i(2n+1)}|\le\alpha(1-\varepsilon),$ $i_p=\overline{1,N},$ $p=\overline{1,2n},$ $n\ge1,$ and for each multiindex $i(2n-1)$ there is a single index $j_{2n},$ $1\le j_{2n}\le N,$ such that $|a_{i(2n-1),j_{2n}}|\ge R$ and $\sum_{i_{2n}\in\{1,2,\ldots,N\}\backslash\{j_{2n}\}}|a_{i(2n)}|\le r,$ $i_p=\overline{1,N},$ $p=\overline{1,2n-1},$ $n\ge1,$ where $\varepsilon,$ $\alpha,$ $r$ and $R$ are real numbers that satisfying certain conditions, and better convergence speed estimates are obtained.

Article metrics
How to Cite
(1)
Antonova, T. On Convergence Criteria for Branched Continued Fraction. Carpathian Math. Publ. 2020, 12, 157-164.