Magnetic and Dielectric Properties of Mg Substituted Nanocrystalline Li Ferrite Obtained by the Method Auto-Ignition Sol-Gel

  • B.K. Ostafiychuk Vasyl Stefanyk Precarpathian National University
  • L.S. Kaykan Vasyl Stefanyk Precarpathian National University
  • Y.S. Kaykan Vasyl Stefanyk Precarpathian National University
  • A.B. Hrubyak Vasyl Stefanyk Precarpathian National University
  • M.O. Nykoliuk Vasyl Stefanyk Precarpathian National University
Keywords: ferrite spinel, combustion synthesis, microstructure

Abstract

The ultrafine particles of magnesium-substituted lithium ferrites of the general formula were synthesized by a low-temperature gel-citrate auto-combustion method. The structural characteristics of the samples were obtained on the basis of X-ray diffraction (XRD) and SEM (emission electron spectroscopy) analyzes. XRD studies have confirmed the formation of a single-phase spinel structure with crystallite sizes around 15 - 30 nm. The M-H loop was recorded using an F-64 ferrometer for all formulations at room temperature and 50 Hz and the hysteresis parameters obtained. The hysteresis loop of the obtained samples showed a clear saturation at the applied field ± 60 E and by its very nature the loop is very symmetrical. Dielectric parameters such as dielectric steel, resistivity (s) and conductivity of samples () were investigated as a function of frequency in the range of 0.01 Hz to 100 kHz and in the temperature range 293 - 493 K using an impedance spectrometer. The dielectric constant of the samples revealed a normal frequency dependence of the dielectric, indicating that the dispersion is due to the polarization of the boundaries of the Maxwell-Wagner type grains and the jump of the electron between ions.

References

[1] M. Raghasudha, D. Ravinder, P. Veerasomaiah, J. Magn. Magn. Mater. 355, 210 (2014).
[2] A. K. M. Akther Hussain, M. Seki, T. Kawai, H. Tabala, J. Appl. Phys. 96 (2004) 1273–1275.
[3] M. A. Ei Hiti, A. I. Ei Shora, S. M. Hammad, Mater. Sci. Technol. 13, 625 (1997).
[4] B. K. Kuanr, J. Magn. Magn. Mater. 163, 164 (1996).
[5] S. C. Watawe, B. D. Sarwade, S. S. Bellad, B. D. Sutar, B. K. Chougule, J. Magn. Magn. Mater. 214(1–2), 55 (2000).
[6] Mathew George, Swapnw S. Nair, Asha Mary John, P. A. Joy, M. R. Anantharaman, J. Phys. D: Appl.Phys. 39, 900 (2006).
[7] M. U. Rana, T. Abbas, Mater. Lett. 57, 925 (2002).
[8] Qi Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang, J. Magn. Magn. Mater. 194, 1 (1999).
[9] M. E. Rabanal, A. Várez, B. Levenfeld, J. M. Torralba, J. Mater. Process. Technol. 143, 470 (2003).
[10] T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri, J. Supercrit. Fluids 53, 92 (2010).
[11] E. J. Choi, Y. Ahn, S. Kim, D. H. An, K. U. Kang, B. G. Lee, K. S. Baek, H. N. Oak, J. Magn. Magn. Mater. 262, L198 (2003).
[12] A. Pradeep, C. Thangasamy, G. Chandrasekaran, J. Mater. Sci.: Mater. Electron. 15, 769 (2004).
[13] B. P. Jacob, S. Thankachan, S. Xavier, E. M. Mohammed, J. Alloy. Compd. 541, 29 (2012).
[14] A. Verma, T. C. Goel, R. G. Mendiratta, P. Kishan, J. Magn. Magn. Mater. 208, 13 (2000).
[15] K. V. Manukyan, Y. S. Chen, S. Rouvimov, Peng Li, Xiang Li, Sining Dong, Xinyu Liu, J. K. Furdyna, Alexei Orlov, G. H. Bernstein, W. Porod, S. Roslyakov, A. S. Mukasyan, J. Phys. Chem. C118(29), 16264 (2014).
[16] S. A. Saafan, S. T. Assar, B. M. Moharram, M. K. ElNimr, J. Magn. Magn. Mater. 322, 628 (2010).
[17] Mamata Maisnam, Sumitra Phanjoubam, Solid State Commun. 152, 320 (2012).
[18] B.K. Ostafiychuk et al., Physics and Chemistry of Solid State, 17(1), 70 (2016).
[19] I. Soibam, S. Phanjoubam, C. Prakash, J. Alloy. Compd. 475, 328 (2009).
[20] I. H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007).
[21] M. A. Gabal, Mater. Res. Bull. 45, 589 (2010).
[22] R. C. Kambale, K. M. Song, Y. S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011).
Published
2017-03-15
How to Cite
Ostafiychuk, B., Kaykan, L., Kaykan, Y., Hrubyak, A., & Nykoliuk, M. (2017). Magnetic and Dielectric Properties of Mg Substituted Nanocrystalline Li Ferrite Obtained by the Method Auto-Ignition Sol-Gel. Physics and Chemistry of Solid State, 18(1), 102-110. https://doi.org/10.15330/pcss.18.1.102-110
Section
Scientific articles