Nanostructured mesoporous g-Fe2O3: a novel photocatalyst for degradation of organic pollutants

  • A.B. Hrubiak G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine
  • O.Yu. Khyzhun Institute for Problems of Materials Sciences National Academy of Sciences of Ukraine
  • B.K. Ostafiychuk Vasyl Stefanyk Precarpathian National University; Institute of Metal Physics National Academy of Science
  • V.V. Moklyak G.V. Kurdyumov Institute of Metal Physics National Academy of Science
  • Yu.V. Yavorskyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • R.P. Lisovsky G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine; Ivano-Frankivsk National Medical University
  • L.G. Keush National Metallurgical Academy of Ukraine
  • B.B. Onyskiv Ivano-Frankivsk Scientific Research Forensic Center of the Ministry of Internal Affaris of Ukraine
Keywords: nanostuctured maghemite, mesoporous structure, conductivity, specific surface area, band gap, photocatalyst

Abstract

The  modified sol-gel synthesis technique was used to created of nanostructured maghemite (γ-Fe2O3). It has been shown that the molar concentration of the original precursors during synthesis affects on the average particle sizes, specific surface area, pore size distributions, optical and conductivity properties. The XPS metod allowed to establish features of electronic structure of the synthesized materials. Optimal conditions for the synthesis of nanostructured maghemite with mesoporous structure were selected. The mechanism of electrical conductivity formation for synthesized mesoporous materials was established. The width of the band gap is determined and its dependence on the molar concentration of precursors is established. The positive correlation between the specific surface area of γ-Fe2O3 samples and photocatalytic activity was installed - the photocatalytic activity of synthesized γ-Fe2O3 increase with growth of specific surface area of γ-Fe2O3 samples.

References

S.W. Cao, Y.J. Zhu, M.Y. Ma, L. Li, L, Zhang, J. Phys. Chem. C. 112(6), 1851 (2008) (DOI: 10.1021/jp077468+).

M. Levy, C. Wilhelm, J.M. Siaugue, O. Horner, J.C. Bacri, F. Gazeau, J. Phys. Condens. Matter. 20(6), 204133 (2008) (DOI: 10.1088/0953-8984/20/20/204133).

S. Capone, M.G. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, E. Majkova, Langmuir 30(4), 1190 (2014) (DOI: 10.1021/la404542u).

Yu.V. Yavorsky, Ya.V. Zaulichny, V.M. Gunko, M.V. Karpets, Journal Of Nano- And Electronic Physics 10(6), 06005 (2018) (DOI: 10.21272/jnep.10(6).06005).

Yu. V. Yavorskyi, Ya. V. Zaulychnyy, М. V. Karpets, А. B. Hrubiak, V. V. Moklyak, О. І. Dudka, Ya. А. Kononenko, Physics and Chamistry of Solid State 20(4) (DOI: 10.15330/pcss.20.4.360-366).

V. Kotsyubynsky, B. Ostafiychuk, V.Moklyak, A. Hrubiak, Solid State Phenomena 230, 120 (2015) ) (DOI: 10.4028/www.scientific.net/SSP.230.120).

O.Y. Khyzhun, V.L. Bekenev, V.V. Atuchin, E.N. Galashov, V.N. Shlegel, Mater. Chem. Phys. 140(2-3), 588 (2013) (DOI: 10.1016/j.matchemphys.2013.04.010).

S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, J. Alloys. Compd. 493(1-2), 340 (2010) (DOI: 10.1016/j.jallcom.2009.12.099).

D. Briggs, P.M. Seach, Practical Surface Analysis (2nd Ed.): Auger and X-Ray Photoelectron Spectroscopy, Chichester, John Willey & Sons Ltd, 1990.

T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43(1), 153 (2005) (DOI: 10.1016/j.carbon.2004.08.033).

Jonscher, A.K. (Universal Relaxation Law, London: Chelsea Dielectrics Press, UK, 1996.

N.F. Mott, J. Non-Cryst. Solids. 1(1), 1 (1968) (DOI: 10.1016/0022-3093(68)90002-1).

K.M. Rosso, M. Dupuis, J. Chem. Phys. 120(15), 7050 (2004). (DOI: 10.1063/1.1676117).

S.R. Elliott, Philos. Mag. 36(6), 1291 (1977) (DOI: 10.1080/14786437708238517).

R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Weinheim, Wiley-VCH Verlag GmbH & Co, 2003.

Cabot, V.F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M.A. Marcus, S.M. Hughes, A.P. Alivisatos, J. Am. Chem. Soc. 129(34), 10358 (2007) (DOI: 10.1021/ja072574a).

K.S. Jung, K.W. Sung, Magnetite: Electrochemical Properties And Its Role On Flow Accelerated Corrosion, Magnetite: Structure, Properties and Applications; Nova Science Publishers, New York, 2010.

L.E. Brus, J. Chem. Phys. 79(11), 5566 (1983) (DOI: 10.1063/1.445676).

T.D. Glotch, G.R. Rossman, Icarus 204(2), 663 (2009) (DOI: 10.1016/j.icarus.2009.07.024).

V. Kotsyubynsky, A. Grubiak, V. Moklyak, V. Pylypiv, R. Lisovsky, Metallofizika i Noveishie Tekhnologii 36(11), 1497 (2014) (DOI: 10.15407/mfint.36.11.1497).

L. Kieush, M.Boyko, A.Koveria, A.Khudyakov, A. Ruban, Eastern-European Journal of Enterprise Technologies 1(6), 34 (2019) (DOI: 10.15587/1729-4061.2019.154082).

Published
2021-03-12
How to Cite
[1]
HrubiakA., KhyzhunO., OstafiychukB., MoklyakV., YavorskyiY., LisovskyR., KeushL. and OnyskivB. 2021. Nanostructured mesoporous g-Fe2O3: a novel photocatalyst for degradation of organic pollutants. Physics and Chemistry of Solid State. 22, 1 (Mar. 2021), 101-109. DOI:https://doi.org/10.15330/pcss.22.1.101-109.
Section
Scientific articles

Most read articles by the same author(s)