The Systems Polyethylene and Polypropylene – CNTs Nanofillers: Quantum-chemical Modeling and Experimental Characteristics

Authors

  • Yu.I. Sementsov Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China; Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • Hao Tang Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China
  • Dongxing Wang Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China
  • E.M. Demianenko Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • M.I. Terets Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • K.O. Ivanenko Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China; Institute of Macromolecular Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • O.M. Ignatenko Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • S.M. Makhno Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China; Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • N.V. Sigareva Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • S.V. Zhuravskyi Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • Yu.V. Hrebelna Ningbo Sino-Ukrainian New Materials Industrial Technologies Institute, Zhenhai district, Ningbo, China
  • О.А. Cherniuk Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • M.T. Kartel Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.4.825-837

Keywords:

nanocomposite, carbon nanotube, polyethylene, polypropylene, density functional theory method, dispersion forces of interaction

Abstract

The purpose of this work was to investigate the interaction of graphene-like nanoclusters with fragments of polymers of the same nature, but of a slightly different structure, for example, polyethylene (PE) and polypropylene (PP), experimentally and using quantum chemistry methods. It is experimentally shown that the reinforcement of PE and PP with carbon nanotubes (CNTs) by mixing in the melt, previously distributed from a stable aqueous dispersion on the surface of the polymer powder, leads to a change in structural, mechanical and thermodynamic characteristics.The degree of crystallinity changes, and the coherent scattering domain (CSD) size, the fracture stress increases, the fracture deformation, thermodynamic characteristics change, and such changes in characteristics for the PP-СNTs system prevail in comparison with the PE-CNTs system.

The interaction energy of graphene-like fragments with PE and PP oligomers was calculated. It was established that the energy of interaction of a graphene-like nanocluster with a PP oligomer is greater, compared to PE, which is consistent with experimental data on the melting temperatures of pure polymers and polymer composites with nanotubes. The polymer with the surface of the nanocarbon fragment forms an intermolecular complex that is not covalently bound but is held by intermolecular dispersion forces.

References

Y. Shi, Yu. Hrebelna, E. Demianenko, S. Makhno, K. Ivanenko, S. Hamamda, M. Terets, M. Kartel, Y. Sementsov. The Carbon Nanotubes, Graphene Nanoparticles Their Oxygen Modified Forms and Composites.In: Hamamda, S., Zahaf, A., Sementsov, Y., Nedilko, S., Ivanenko, K. (eds) Proceedings of the 2nd International Conference of Nanotechnology for Environmental Protection and Clean Energy Production. ICNEP 2023. Springer Proceedings in Materials. 45, 29 (2024); https://doi.org/10.1007/978-981-97-1916-7_3.

A.S. Sethulekshmi, A. Saritha, K. Joseph, A comprehensive review on the recent advancements in natural updates rubber nanocomposites, International Journal of Biological Macromolecules 194, 819 (2022); https://doi.org/10.1016/j.ijbiomac.2021.11.134.

J.S. Jayan, A. Saritha, K. Joseph, MoS2: advanced nanofiller for reinforcing polymer matrix, Phys. E Low Dimens. Syst. Nanostruct, 132, 114716 (2021); https://doi.org/10.1016/j.physe.2021.114716.

A.S. Sethulekshmi, J.S. Jayan, A. Saritha, K. Joseph, , Insights into the reinforcibility and multifarious role of WS2 in polymer matrix, J. Alloys Compd, 876, 160107 (2021); https://doi.org/10.1016/j.jallcom.2021.160107.

A. Jacob, P. Kurian, A.S. Aprem, Transport properties of natural rubber latex layered clay nanocomposites, J. Appl. Polym. Sci., 108(4), 2623 (2008); https://doi.org/10.1002/app.26615.

L. Bokobza, Multiwall carbon nanotube elastomeric composites: A review, Polymer, 48(17), 4907 (2007); https://doi.org/10.1016/j.polymer.2007.06.046.

W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Comp. Sci. Technol, 69 (10), 1486 (2009); https://doi.org/10.1016/j.compscitech.2008.06.018.

S. Makhno, O. Lisova, P. Gorbyk, Y. Shi, K. Ivanenko, Y. Sementsov, Estimation of Percolation Threshold and Its Influence on the Properties of Epoxy Resin-Based Polymer Composite Materials Filled Carbon Fibers and Carbon Nanotubes, Springer Proceedings in Materials, 39 (2024); https://doi.org/10.1007/978-981-97-1916-7_4.

Y. Zare, Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties, Composites: Part A, 84, 158 (2016); http://dx.doi.org/10.1016/j.compositesa.2016.01.020.

M. Malagù, M. Goudarzi, A. Lyulin, E. Benvenuti, A. Simone, Diameter-dependent elastic properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations, Composites: Part B, 131, 260 (2017); https://doi.org/10.1016/j.compositesb.2017.07.029.

M. Cen-Puca, A. Oliva-Avilés, F. Avilés, Thermoresistive mechanisms of carbon nanotube/polymer composites, Physica E, 95, 41 (2018); https://doi.org/10.1016/j.physe.2017.09.001.

Y.I. Sementsov, S.N. Makhno, S.V.Zhuravsky, M.T. Kartel, Properties of polyethylene–carbon nanotubes composites, Chemistry, physics and technology of surface, 8(2), 107(2017); https://doi.org/10.15407/hftp08.02.107.

Y.I. Sementsov, М.Т. Kartel, The influence of small concentrations of carbon nanotubes on the structuralization in matrices of different nature, Chemistry, physics and technology of surface, 10(2), 174(2019); https://doi.org/10.15407/hftp10.02.174.

F. Lozovyi, K. Ivanenko, S. Nedilko, S. Revo, S. Hamamda, Thermal analysis of polyethylene + X% carbon nanotubes, Nanoscale Research Letters, 11(1), 97(2016); https://doi.org/10.1186/s11671-016-1315-y.

T.G. Avramenko, N.V. Khutoryanskaya, S.M. Naumenko, K.O. Ivanenko, S.Hamamda, S.L. Revo, Effect of carbon nanofillers on processes of structural relaxation in the polymer matrixes, Springer Proceedings in Physics, 221, 293(2019); https://doi.org/10.1007/978-3-030-17759-1_20.

M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678 (1996); https://doi.org/10.1038/381678a0.

A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube-polymer interfacial strength, Appl Phys Lett., 82(23), 4140(2003); https://doi.org/10.1063/1.1579568.

K. Mylvaganam, L. C. Zhang, Chemical Bonding in Polyethylene−Nanotube Composites: A Quantum Mechanics Prediction, J. Phys. Chem. B., 108(17), 5217(2004); https://doi.org/10.1021/jp037619i.

S. Tretiak, Triplet state absorption in carbon nanotubes: A TD−DFT study, Nano Lett., 7(8), 2201(2007); https://doi.org/10.1021/nl070355h.

M.G. Ahangari, A. Fereidoon, M.D. Ganji, Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties, J Mol. Model., 19, 3127(2013); http://dx.doi.org/10.1007/s00894-013-1852-6.

V.V. Ivanovskaya, A.L. Ivanovsky, About some directions of computer materials science of inorganic nanostructures, Mathematical physics and modelling, 1(1), 7(2009).

Q. Zhang, X. Zhao, G. Sui, X. Yang, Surface sizing treated MWCNTs and Its effect on the wettability, interfacial interaction and flexural properties of MWCNT/epoxy nanocomposites, Nanomaterials, 8(9), 680(2018); https://doi.org/10.3390/nano8090680.

A.V. Melezhik, Y.I. Sementsov, V.V. Yanchenko, Synthesis of fine carbon nanotubes on coprecipitated metal oxide catalysts, Russian Journal of Applied Chemistry, 78(6), 917(2005); https://doi.org/10.1007/s11167-005-0420-y.

T.M. Pinchuk-Rugal, O.P. Dmytrenko, M.P. Kulish, Y.Y. Grabovskyy, O.S. Nychyporenko, Y.I. Sementsov, V.V. Shlapatskaya, Radiation damages of isotactic polypropylene nanocomposites with multi-walled carbon nanotubes, , Problems of Atomic Science and Technology, 96(2), 10(2015).

A. Patterson, The Scherrer formula for X-Ray particle size determination. Phys. Rev., 56(10), 978 (1939); https://doi.org/10.1103/PhysRev.56.978.

S.M. Makhno, O.M. Lisova, R.V. Mazurenko, P.P. Gorbyk, K.O. Ivanenko, M.T. Kartel, Yu.I. Sementsov, Electrophysical and strength characteristics of polychlorotrifluoroethylene filled with carbon nanotubes dispersed in graphene suspensions, Applied Nanoscience, 13(12), 7591(2023); https://doi.org/10.1007/s13204-023-02902-6.

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupui, J.A.Jr. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem., 14(11), 1347(1993); https://doi.org/10.1002/jcc.540141112.

A.D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98(7), 5648(1993); https://doi.org/10.1063/1.464913.

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B., 37(2), 785(1988); https://doi.org/10.1103/PhysRevB.37.785.

K. Jackson, S.K. Jaffar, R.S. Paton, Computational Organic Chemistry, Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 109, 235(2013); https://doi.org/10.1039/c3oc90007j.

G.R. Hutchison, M.A. Ratner, T.J. Marks, Intermolecular charge transfer between heterocyclic oligomers. effects of heteroatom and molecular packing on hopping transport in organic semiconductors, J. Am. Chem. Soc. 127(48), 16866(2005); https://doi.org/10.1021/ja0533996.

S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J Comput Chem., 32(7), 1456(2011); https://doi.org/10.1002/jcc.21759.

S. Grimme, Density functional theory with London dispersion corrections, WIREs Comput. Mol. Sci., 1(2), 211(2011); https://doi.org/10.1002/wcms.30.

A.I. Alrawashdeh, J.B. Lagowski, The role of the solvent and the size of the nanotube in the non-covalent dispersion of carbon nanotubes with short organic oligomers – a DFT study, RSC Adv., 8, 30520 (2018); https://doi.org/10.1039/C8RA02460J.

D.J. Wales, R.S. Berry, Limitations of the Murrell-Laidler Theorem, J. Chem. Soc. Faraday Trans., 88, 543 (1992); https://doi.org/10.1039/FT9928800543.

S.F. Sun, Physical Chemistry of Macromolecules: Basic Principles and Issues. 2nd ed. (New York: Wiley, 2004).

T.P. Lodge, M. Muthukumar, Physical chemistry of polymers: entropy, interactions, and dynamics. J. Phys. Chem., 100(31), 13275 (1996); https://doi.org/10.1021/jp960244z.

Y. Yang, X. Ding, M.W. Urban Chemical and physical aspects of self-healing materials, Prog. Polym. Sci., 49–50, 34(2015); https://doi.org/10.1016/j.progpolymsci.2015.06.001.

S. Nikmatin, A. Syafiuddin, A.B. Hong Kueh, A. Maddu, Thermal, and Mechanical Properties of Polypropylene Composites Filled with Rattan Nanoparticles, Physical, J. Appl. Polym. Sci. Technol., 15(4), 386(2019); https://doi.org/10.1016/j.jart.2017.03.008.

A. Niemczyk, K. Dziubek, B. Sacher-Majewska, K. Czaja, M. Dutkiewicz, B. Marciniec, Study of Thermal Properties of Polyethylene and Polypropylene Nanocomposites with Long Alkyl Chain-Substituted POSS Fillers, J. Therm. Anal. Calorim., 125, 1287(2016); https://doi.org/10.1007/s10973-016-5497-4.

M.L. Minus, H.G. Chae, S. Kumar, Polyethylene crystallization nucleated by carbon nanotubes under shear, ACS Appl. Mater. Interfaces, 4(1), 326(2012); https://doi.org/10.1021/am2013757.

T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S.E.J. Bell, G.P. Brennan, D. Bein, P. Lemoine, J.P. Quinn, Polyethylene multiwalled carbon nanotube composites, Polymer, 46(19), 8222 (2005); https://doi.org/10.1016/j.polymer.2005.06.094.

O.S. Nychyporenko, O.P. Dmytrenko, M.P. Kulish, T.M. Pinchuk-Rugal, Y.Y. Grabovskyy, A.M. Zabolotnyy, V.V. Strelchuk, A.S. Nikolenko, Y.I. Sementsov, Defects of structure of nanocomposites of polytetrafluorethylene with multiwalled carbon nanotube, Nanosystems, Nanomaterials, Nanotechnologies, 13(4), 673(2015).

S. Kirkpatrick, Rev Modern Phys., Percolation and Conduction 45, 574 (1973); https://doi.org/10.1103/RevModPhys.45.574 .

A.L. Efros, Physics and geometry of disorder (Moscow: Nauka,1982).

Y.P. Mamunya, Electrical and thermal conductivity of polymer composites with dispersed fillers, Ukrainian Chemistry Journal, 66(3), 55(2000). [in Ukrainian].

A. Quivy, R. Deltour, A.G.M. Jansen, P. WyderTransport phenomena in polymer-graphite composite materials, Phys. Rev. B., 39(2), 1026(1989); https://doi.org/10.1103/PhysRevB.39.1026.

I. Balberg, N. Binenbaum, S. Bozovsky, Anisotropic percolation in carbon black-polyvinylchloride composites, Sol St Comm., 47(12), 989(1983); https://doi.org/10.1016/0038-1098(83)90984-5.

M.O. Lisunova, Y.P. Mamunya, N.I. Lebovka, A.V. Melezhyk, Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites, European Polymer Journal, 43(3), 949 (2007); https://doi.org/10.1016/j.eurpolymj.2006.12.015.

Y. Sementsov, X. Zhang, Kan. Kan, Expanded Graphite and Its Composites (Heilongjiang: Heilongjiang People's Publishing House, 2021).

J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review, Polym. Eng. Sci., 16(5), 344 (1976); https://onlinelibrary.wiley.com/doi/pdf/10.1002/pen.760160512.

A. Haque, A. Ramasetty, Theoretical study of stress transfer in carbon nanotubes reinforced polymer matrix composites, Composite Structures, 71(1), 68(2005); https://doi.org/10.1016/j.compstruct.2004.09.029.

M. Kartel, Y. Sementsov, S. Mahno, V. Trachevskiy, WangBo, Polymer Composites Filled with Multiwall Carbon Nanotubes, Universal Journal of Materials Science, 4(2), 23 (2016); http://dx.doi.org/10.13189/ujms.2016.040202.

Y.I. Sementsov, S.M. Makhno, S.V. Zhuravsky, M.T. Kartel, Himia, Properties of polyethylene-carbon nanotubes composites, Fizika ta Tehnologia Poverhni, 8(2), 107(2017); https://doi.org/10.15407/hftp14.04.534.

Published

2024-12-08

How to Cite

Sementsov, Y., Tang, H., Wang, D., Demianenko, E., Terets, M., Ivanenko, K., … Kartel, M. (2024). The Systems Polyethylene and Polypropylene – CNTs Nanofillers: Quantum-chemical Modeling and Experimental Characteristics. Physics and Chemistry of Solid State, 25(4), 825–837. https://doi.org/10.15330/pcss.25.4.825-837

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)