Bioengineered metal and metal oxide nanoparticles for photocatalytic and biological applications: A review

Authors

  • Geetha Palani Dhanalakshmi College of Engineering
  • Karthik Kannan Qatar University
  • D. Radhika Jain Deemed-to-be University
  • P. Vijayakumar Bharathidasan University
  • K. Pakiyaraj Arulmigu Palaniandavar College of Arts & Culture

DOI:

https://doi.org/10.15330/pcss.21.4.571-583

Keywords:

Metal, Metal oxide nanoparticles, XRD, TEM, photocatalytic activity, biological studies

Abstract

In this modern era, (M/MO-NPs) Metal/metal oxide nanoparticles are utilized in various areas. The growth of nanoparticles is tremendous in our daily activities like beauty products, doses, delivery of drugs, and outfit. They can be set up by numerous strategies, for example, green amalgamation and the ordinary compound blend techniques. Green synthesis incorporates endless increase to deliver M/MO-NPs with requesting properties. In Bioengineering, the "green" combination has increased massive consideration as a trustworthy, dependable, and natural benevolent convention for orchestrating a wide scope of Nanomaterials including M/MO-NPs and bio propelled materials. Be that as it may, the utilization of plant extracts for this intention is profitable over organisms because of usability and less biohazard. Union of metal and MO-NPs by using the extract of plant fluid arrangement have increased consideration toward the green methodology and with no antagonistic impact on nature. The current article intends to survey the advancement made lately on nanoparticle biosynthesis by organisms. These microbial assets incorporate microorganisms, organisms, yeast, green growth, and viruses. This study predominantly centers on the biosynthesis of the most usually examined M/MO-NPs, for example, copper, cadmium, noble metals, platinum, titanium oxide, palladium, zinc oxide, and cadmium sulfide.

References

V. Bhuvaneshwari, D. Vaidehi, S. Logpriya, Microbiol Curr Res 2(1), 5 (2018). https://doi.org/10.4066/2591-8036.e105.

O. Yamamoto, M. Komatsu, J. Sawai, Z.E. Nakagawa, J Mater Sci. 15, 847 (2004). https://doi.org/10.1023/B:JMSM.0000036271.35440.36.

Blecher, A. Nasir, A. Friedman, Virulence 2, 395 (2011). https://doi.org/10.4161/viru.2.5.17035.

M. Farahmandjou, S. Jurablu, Int J Bio Inor Hybr Nanomater. 3, 179 (2014). https://doi.org/10.1186/s12951-016-0225-6.

C. Abinaya, J. Mayandi, J. Osborne, M. Frost, C. Ekstrum, and J. M. Pearce, Materials Research Express, 4(7), 075401 (2017). https://doi.org/10.1088/2053-1591/aa796d.

M. Eltarahony, S. Zaki, Z. Kheiralla, and D. Abd-El-haleem, International Journal of Recent Scientific Research 6, 7225 (2015).

G. Cao, Nanastructures and nanomaterials—synthesis, properties and applications (Singapore, World Scientific, 2004).

A.K. Gade, P. Bonde, A.P. Ingle, P.D. Marcato, N. Durán, M.K. Rai, J Biobased Mater Bioenergy 2, 243 (2008). https://doi.org/10.1166/jbmb.2008.401.

P. Ghosha, G. Hana, M. Dea, C.K. Kima, V.M. Rotello, Adv Drug Del Rev 60, 1307 (2008). https://doi.org/10.1016/j.addr.2008.03.016.

K. Govindaraju, S. Khaleel Basha, V. Ganesh Kumar, G. Singaravelu, J Mater Sci 43, 5115 (2008). https://doi.org/10.1007/s10853-008-2745-4.

T. Kathiraven, A. Sundaramanickam, N. Shanmugam, T. Balasubramanian, Appl Nanosci 5, 499 (2015). https://doi.org/10.1007/s13204-014-0341-2.

S.S. Shankar, A. Ahmad, M. Sastry, Biotechnol Prog 19, 1627 (2003). https://doi.org/10.1021/bp034070w.

S.H. Ilias, K.Y. Kok, I.K. Ng, N.U. Saidin, J. Phys. Conf. Ser. 2013, 431, 01 (2003). https://doi.org/10.1088/1742-6596/431/1/012003.

L. Castro, M.L. Blázquez, J. Muñoz, F.G. González, A. Ballester, Rev. Adv. Sci. Eng. 3, 199 (2014). https://doi.org/10.1166/rase.2014.1064.

S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, J. Adv. Res., 7, 17 (2016). https://doi.org/10.1016/j.jare.2015.02.007.

A. Raja, S. Ashokkumar, R.P. Marthandam, J. Jayachandran, J. Photochem. Photobiol 181, 53 (2018). https://doi.org/10.1016/j.jphotobiol.2018.02.011.

M.R. Vaezi and S.K. Sadrnezhaad, Materials and Design, 28(2), 515 (2007).

P. Raveendran, J. Fu, S.L. Wallen, J Am Chem Soc 125, 13940 (2003). https://doi.org/10.1021/ja029267j.

S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol Prog. 22, 577 (2006). https://doi.org/10.1021/bp0501423.

Mohammad Malakootian, Karthik Kannan, Majid Amiri Gharaghani, Abbas Dehdarirad, Alireza Nasiri, Yousef Dadban Shahamat, Hakimeh Mahdizadeh, Journal of Environmental Chemical Engineering, 7, 6,103457 (2019) https://doi.org/10.1016/j.jece.2019.103457.

S.A. Aromal, K.V.D. Babu, D. Philip, Spectrochim Acta A Mol Biomol Spectrosc 96, 1025 (2012).

A Phuruangrat, Paveen-On Keereesaensuk, K Karthik, Phattranit Dumrongrojthanath, Nuengruethai Ekthammathat, Somchai Thongtem, Titipun Thongtem, J. Inorg. Organomet. Polym. Mater. 30, 1030 (2020). https://doi.org/10.1007/s10904-019-01254-5.

R.B. Asamoah, A. Yaya, B. Mensah, Results in Materials 7, (2020). https://doi.org/10.1155/2020/7814324.

A Rangayasami, K Kannan, S Joshi, M Subban, Biocatalysis and Agricultural Biotechnology 27, 101690, (2020). https://doi.org/10.1016/j.bcab.2020.101690.

D. Suresh, P.C. Nethravathi, Udayabhanu, H. Rajanaika, H. Nagabhushana, S.C. Sharma, Mater Sci Semicond Process 31, 446 (2015). https://doi.org/10.1016/j.mssp.2014.12.023.

M. Khan, A.H. Al-Marri, M. Khan, et al., Nanoscale Res Lett. 10, 1 (2015). https://doi.org/10.1186/s11671-015-1144-4.

Khwaja Salahuddin Siddiqi and Azamal Husen, Nanoscale Res Lett. 11, 98 (2016). https://doi.org/10.1186/s11671-016-1311-2.

K. Kannan, D. Radhika, M.P. Nikolova, V. Andal, K.K. Sadasivuni, Optik 218, 165112 (2020). https://doi.org/10.1016/j.ijleo.2020.165112.

Q. Huang, D. Li, Y. Sun, et al., Nanotechnol. 1, 1 (2007). https://doi.org/10.1088/0957-4484/18/10/105104.

P. Velmurugan, S.-C. Hong, A. Aravinthan, et al., Arab J Sci Eng. 42, 201 (2017). https://doi.org/10.1007/s13369-016-2254-8.

K. Kannan, D. Radhika, S. Vijayalakshmi, K.K. Sadasivuni, A.A. Ojiaku, International Journal of Environmental Analytical Chemistry 1, 14 (2020). https://doi.org/10.1080/03067319.2020.1733543.

J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi, M.V. Arasu. J Photochem Photobiol B Biol. 162, 395 (2016). https://doi.org/10.1016/j.jphotobiol.2016.07.011.

Annu, Akbar Ali, Shakeel Ahmed, Handbook of Ecomaterials 1 (2018).

D. Raghunandan, M.D. Bedre, S. Basavaraja, et al., Colloids Surf B Biointerfaces 79, 235 (2010). https://doi.org/10.1016/j.colsurfb.2010.04.003.

S. Nagarajan, K. Arumugam Kuppusamy, J Nanobiotechnol 11, 39 (2013). https://doi.org/10.1186/1477-3155-11-39.

K. Karthik, S. Dhanuskodi, S. Prabukumar, S. Sivaramakrishnan, Optik 204, 164221 (2020). https://doi.org/10.1016/j.ijleo.2020.164221.

J.C. Yu, J. Yu, W. Ho, L. Zhang. Chem Commun. 19, 1942 (2001). https://doi.org/10.1039/B105471F.

K. McNamara, Tofail SAM, Adv Phys X 2, 54 (2017). https://doi.org/10.1080/23746149.2016.1254570.

P. Tiwari, K. Vig, V. Dennis, S. Singh, Nanomaterials 1, 31 (2011). https://doi.org/10.3390/nano1010031.

P. Surendran, A. Lakshmanan, S. Sakthy Priya, P. Geetha, P. Rameshkumar, Karthik Kannan, Tejaswi Ashok Hegde, G. Vinitha, Inorg. Chem. Commun. 124,108397 (2021). https://doi.org/10.1016/j.inoche.2020.108397.

K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Journal of Photochemistry and Photobiology B: Biology 190, 8 (2019). https://doi.org/10.1016/j.jphotobiol.2018.11.001.

K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivarama krishnan, J Mater Sci: Mater Electron, 28, 11420 (2017). https://doi.org/10.1007/s10854-017-6937-z.

Surendran Pandiyan, Lakshmanan Arumugam, Sakthy Priya Srirengan, Rameshkumar Pitchan, Pushpalatha Sevugan, Karthik Kannan, Geetha Pitchan, Tejaswi Ashok Hegde, Vinitha Gandhirajan, ACS Omega 5 (47), 30363 (2020). https://doi.org/10.1021/acsomega.0c03290.

A. Paliwal, R. Ameta, S.C. Ameta, Eur Chem Bull 6, 120 (2017). https://doi.org/10.17628/ecb.2017.6.120-124.

K. Karthik, M. Shashank, V. Revathi, and Tetiana Tatarchuk, Molecular crystals and liquid crystals 673, 170 (2018). https://doi.org/10.1080/15421406.2019.1578495.

Y. Zhao, L. Hai, X. Li, X. Yang, X. Wang, Adv Mater Res 197-198, 281 (2011).

G. Nagaraju, K. Karthik, M. Shashank, Microchemical Journal 147, 749 (2019). https://doi.org/10.1016/j.microc.2019.03.094.

P.C. Udauabhanu, M.A. Nethravathi, Pavan Kumar, D. Suresh, et al, Semiconductor Processing, 33, 81 (2015).

M. Aminuzzaman, L.M. Kei, W.H. Liang, Green and Sustainable Technology AIP Conf. Proc. 1828, 020016 (2017).

M. Sorbium, E.S. Mehr, M. A. Ramazani, S.T. Fardood, International Journal of Environmental Research 12(9), 29 (2018).

S. Sunderishwary, Muniandy, N.M.H. Kaus, Z.T. Jiang, et al, RSC Adv. 7, 48083 (2017). https://doi.org/10.1039/C7RA08187A

M. Aghareed, Tayeb, D.S. Hussein, American Journal of Nanomaterials 3(2), 57 (2015). https://doi.org/10.1007/s10924-017-0985-6.

K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Powder Technology 249, 456 (2013). https://doi.org/10.1016/j.powtec.2013.09.016.

F. Fazlali, Ar. Mahjoub, R. Abazari, Solid State Sciences 48, 263 (2015).

A.A. Olajire, A.A. Mohammed, Advanced Powder Technology 31, 211 (2020).

Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami et al, Polyhedron 178, 114351 (2020). https://doi.org/10.1016/j.poly.2020.114351.

Karthik Kannan, Devi Radhika, Kishor Kumar Sadasivuni, Kakarla Raghava Reddy, Anjanapura V. Raghu, Advances in Colloid and Interface Science, 281, 102178 (2020) https://doi.org/10.1016/j.cis.2020.102178.

J.M. Yousef, E.N. Dania, Health 2, 38 (2012).

M.P. Reddy, A. Venugopal, M. Subrahmanyam, Water Res, 41, 379 (2007). https://doi.org/10.1007/s10562-008-9561-y.

D. Sharma, I.S. Myalowenkosi, K. Suvardhan, S.M. Phumlane, S. Gulshan, et al., J Photochem Photobiol B Biol, 162(1), 199 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.043.

Lili He, Yang Liu, Azlin Mustapha, Mengshi Lin, Microbiological Research 166, 207 (2011). https://doi.org/10.1016/j.micres.2010.03.003.

J. Kumar, V. Shrivastava, S. Thakur, Advanced Science Focus 1, 346 (2013).

P.A. Arciniegas-Grijalba, M.C. Patin˜o-Portela1, L.P. Mosquera-Sa´nchez, et al., Applied Nanoscience 7, 225 (2017). https://doi.org/10.1007/s13204-017-0561-3.

G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, et al., Int J Antimicrob Agents 33, 587 (2009). https://doi.org/10.1016/j.ijantimicag.2008.12.004

S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, J Clust Sci, 22, 121 (2011). https://doi.org/10.1007/s10876-011-0349-7.

S. Sathiyavimal, S. Vasantharaj, D. Bharathia, M. Saravanan, et al., Journal of Photochemistry & Photobiology, B: Biology 188, 126 (2018). https://doi.org/10.1016/j.jphotobiol.2018.09.014.

S.M. Hasheminya and J. Dehghannya, Food Biosci. 34, 100510 (2020). https://doi.org/10.1016/j.fbio.2019.100510.

R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, J Ind Eng Chem. 31, 173 (2015). https://doi.org/10.1016/j.jiec.2015.06.021.

N. Pariona, A.I. Mtz-Enriquez, D. Sanchez-Rangel, et al., RSC Adv, 9, 18835 (2019).

M. Safaeia, M. Taranb, M.M. Imanic, Materials Science and Engineering: C 101, 323 (2019).

KiranT., AhmedH. M. P., BegumN. S., KannanK., RadhikaD. Physics and Chemistry of Solid State, 21(3), 433-439 (2020). https://doi.org/10.15330/pcss.21.3.433-439.

G. Rajakumar, A. Abdul Rahuman, S. Mohana Roopan, V. Gopiesh Khanna, G. Elango, C. Kamaraj, A. Abduz Zahir, K. Velayutham, Spectrochimica Acta Part A 91, 23 (2012). https://doi.org/10.1016/j.saa.2012.01.011.

P. Surendran, A. Lakshmanan, S. Sakthy Priya, K. Balakrishnan, P. Rameshkumar, Karthik Kannan, P. Geetha, Tejaswi Ashok Hegde, G. Vinitha, Nano-Structures & Nano-Objects, 24, 100589 (2020). https://doi.org/10.1016/j.nanoso.2020.100589.

K. Karthik, S. Dhanuskodi, S. Prabu Kumar, C. Gobinath, S. Sivaramakrishnan, Mater. Lett. 206, 217 (2017) https://doi.org/10.1016/j.matlet.2017.07.004.

Karthik Kannan, D. Radhika, A.S. Nesaraj, Kishor Kumar Sadasivuni, L. Sivarama Krishna, Inorganic Chemistry Communications, 122, 108307 (2020) https://doi.org/10.1016/j.inoche.2020.108307.

S. Rakshit, S. Ghosh, S. Chall, S.S. Mati et al, RSC Adv. 3, 19348 (2013).

Karthik Kannan, D. Radhika, A.S Nesaraj, Kishor Kumar Sadasivuni, Kakarla Raghava Reddy, Deepak Kasai, Anjanapura V. Raghu, Materials Science for Energy Technologies, 3, 853 (2020) https://doi.org/10.1016/j.mset.2020.10.008.

K. Alamelu, K. Ramasami, M.V. Reddy, R. Geetha, Science Semiconductor Processing 40, 194 (2015). https://doi.org/10.1016/j.mssp.2015.06.017.

Z.X. Tang, Z. Yu, Z.L. Zhang, X.Y. Zhang et al, Quim Nova 36, 933 (2013).

I.I. Muhamad, S.A. Asgharzadehahmadi, D.N.A. Zaide, E. Supriyanto, International Journal of Biology and Biomedical Engineering 3, 7 (2013).

Almontasser, A., Parveen, A., Hashim, M. et al. Structural, optical, and antibacterial properties of pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles: a comparative study. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01590-w

G. Sharmila, C. Muthukumaran, E. Sangeetha, H. Saraswathi, et al, Nano-Structures & Nano-Objects 20, 100380 (2019). https://doi.org/10.1016/j.nanoso.2019.100380.

Y. Han, & S. Obendorf, Textile Research Journal 86, 339 (2016). https://doi.org/10.1177/0040517515596935.

A.B. Lavand, & Y.S. Malghe, Journal of Asian Ceramic Societies 3, 305 (2015). https://doi.org/10.1016/j.jascer.2015.06.002.

L. Wang, et al., Physical Chemistry Chemical Physics 19, 16576 (2017). https://doi.org/10.1039/C6CP05108A.

Tariq Khalafi, Foad Buazar & Kamal Ghanemi, Scientific Reports 9, 6866 (2019). https://doi.org/10.1038/s41598-019-43368-3.

Downloads

Published

2020-12-30

How to Cite

Palani, G., Kannan, K., Radhika, D., Vijayakumar, P. ., & Pakiyaraj, K. . (2020). Bioengineered metal and metal oxide nanoparticles for photocatalytic and biological applications: A review. Physics and Chemistry of Solid State, 21(4), 571–583. https://doi.org/10.15330/pcss.21.4.571-583

Issue

Section

Scientific articles

Most read articles by the same author(s)