Thermodynamic Functions of Fe3B Borides

  • N.Yu. Filonenko State Institution “Dnipropetrovsk Medical Academy of Health Ministry of Ukraine”,
  • O.M. Galdina Oles Honchar Dnipropetrovsk national university, Dnipro
  • A.V. Kochenov State Institution “Dnipropetrovsk Medical Academy of Health Ministry of Ukraine”
Keywords: melting, alloy overheating above the liquidus line, the Fe-B system alloys, thermodynamic functions, Fe3B iron boride

Abstract

In this work we study the structural properties of hypoeutectic and hypereutectic Fe-B alloys, depending on the temperature of heating above the liquidus line and the cooling rate. Experiments were carried out for the Fe-B system alloys with boron content of 2.0 - 4.5 % (wt.), the rest is iron. To determine physical properties of the alloys microstructural and X-ray diffraction analysis were used. It is shown that overheating of the molten alloy to 150 K above the liquidus line and aftercooling leads to complete suppression of the formation of primary iron crystals in the hypoeutectic alloys and partially to suppression of Fe2B formation in the hypereutectic alloys of the Fe-B system. For the first time it is shown that heating of Fe-B hypoeutectic alloys to 150 K above the liquidus line and cooling with a rate of 103 K/s lead to formation of Fe3B boride in as-cast state, which was present in the eutectic colony.

References

G.V. Samsonov, T. I. Serebrjakova, V. A. Neronov, Boridy (Atomizdat., Moskva, 1999).

N. P. Ljakishev, Ju.L. Pliner, S.I Lappo, Borsoderzhashhie stali i splavy (Metallurgija, Moskva, 1986).

H. Okamoto, Journal of Phase Equilibria and Diffusion 25(3), 297 (2004) (doi: 10.1007/s11669-004-0128-3).

O.A. Bannyh, M.E. Drica Diagrammy sostojanija dvojnyh i mnogokomponentnyh sistem na osnove zheleza. Spravochnik :(Metallurgija, Moskva, 1986).

M. Matsuura, Solid State Communications 30, 231 (1979) (doi:10.1016/0038-1098(79)90341-7).

Toshio Nakajima, Eiji Kita, Hiromitsu Ino Journal of Materials Science 23(4), 1279 (1988) .

G.E. Abrosimova, A.S. Aronin, FTT 10(3), 47 (1988).

L.G. Korshunov, V.A. Shabashov, A.V. Litvinov, N.L. Chernenko, Fizika metallov i metallovedenie. 109, 551 (2010).

Yunus Khan, Eckart Kneller, Michael Sostarich Z. Metallkunde Bd 72(8), 553 (1981).

Yunus Khan, Eckart Kneller, Michael Sostarich Z. Metallkunde Bd 73(10), 624 (1982).

S.V. Tverdohlebova Vіsnik Dnіpropetrov. nac. un-tu. Ser. Fіzika. Radіoelektronіka, 14( 12/1) 100 (2007).

Ju.B. Kuz'ma, N.F. Chaban, Dvojnye i trojnye sistemy, soderzhashhie bor. Spravochnik (Metallurgija, Moskva, 1990).

N.P. Ljakishev Diagrammy sostojanija dvojnyh metallicheskih sistem. Spravochnik. (Gosudarstvennoe izdatel'stvo Fiziko-matematicheskoj literatury, Moskva, 1959).

M.I. Shahparonov, Vvedenie v molekuljarnuju teoriju rastvorov (Gosud. izd-vo tehniko-teorit. lit, Moskva, 1956).

L. Zhirifal'ko, Statisticheskaja fizika tverdogo tela (Mir, Moskva, 1975).

Ju.B. Kuz'ma, Kristallohimija boridov (Vishha shkola, 1983).

Arthur Bialon, The Iron-Boron System: Ordered Structures and Point Defects Dissertation Bochum 2013 pp. 200.

I.P. Bazarov, Termodinamika (Vysshaja shkola, Moskva, 1991).

M. Palumbo, G. Cacciamani, E. Bosco, M. Baricco., Intermetallics 11, 1293 (2003) (doi:10.1016/S0966-9795(03)00171-7).

Yang Chang, Yang Gen, Lu Yi, Chen Yu, Zhou Yao, Trans. Noferrous Met. Soc. China 16, 39 (2006) (doi:10.1016/S1003-6326(06)60007-1).

L. Battezzati, C. Antonione, M. Baricco, J Alloys Comp 247, 164 (1997).

M. Mihalkovič and M. Widom, Physical Review B 70(14), 144107 (2004). DOI:10.1103/PhysRevB.70.144107.

M.T. Clavagera-mora, M. D. Baro, S. Surinach, N. Clavaguera Collogue de physique C4. 51(15), 49 (1990).

Published
2019-07-10
How to Cite
FilonenkoN., GaldinaO., & KochenovA. (2019). Thermodynamic Functions of Fe3B Borides . Physics and Chemistry of Solid State, 20(2), 139-143. https://doi.org/10.15330/pcss.20.2.139-143
Section
Scientific articles