Fabrication and Tailoring the Structural and Dielectric Characteristics of GO/Sb2O3/PMMA/PC Quaternary Nanostructures For Solid State Electronics Nanodevices

  • Dhay Ali Sabur Department of Optics Techniques, Al–Mustaqbal University College, Babylon, Iraq
  • Majeed Ali Habeeb University of Babylon, College of Education for Pure Sciences, Department of Physics, Iraq
  • Ahmed Hashim University of Babylon, College of Education for Pure Sciences, Department of Physics, Iraq
Keywords: nanocomposites, Graphene oxide, dielectric properties, blend, nanodevices


In this paper, films of (PMMA-PC/Sb2O3-GO) quaternary nanostructures were prepared  by casting method with different concentrations of Sb2O3/GO NPs are (0, 1.4 %, 2.8 %, 4.2 %,and 5.6 %). The structural and dielectric characteristics of nanostructures system (PMMA-PC/Sb2O3-GO) have been explored to use in different solid state electronics nanodevices applications. The morphology of (PMMA-PC/Sb2O3-GO) nanostructures films was studied using a scanning electron microscope (SEM). SEM images indicate a large number of uniform and coherent aggregates or chunks. The Fourier transform infrared spectroscopy(FTIR) analysis were studied to show the interactions between the Sb2O3/GO NPs and PMMA/PC blend. The dielectric properties of nanostructures films were investigated in the frequency range (100HZ-5MHZ). The dielectric constant, dielectric loss, and A.C electrical conductivity increase with the concentration of (Sb2O3-GO) NPs. The dielectric constant and dielectric loss were reduced, whereas electrical conductivity increased with frequency. Finally, results showed the PMMA-PC/Sb2O3-GO nanostructures may be considered as promising materials for solid state electronics nanodevices.


A. Hashim, M. A. Habeeb, & A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures, Sensor Letters, 15(9), 758 (2017); https://doi.org/10.1166/sl.2017.3876.

A. Hazim, H.M. Abduljalil, & A. Hashim, Analysis of Structural and Electronic Properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) Nanocomposites for Low Cost Electronics and Optics Applications, Trans. Electr. Electron. Mater. 21, 48 (2020); https://doi.org/10.1007/s42341-019-00148-0.

Kaoutar Benthami, Mai ME. Barakat and Samir A. Nouh, Modification of optical properties of PC-PBT/Cr2O3 and PC-PBT/CdS nanocomposites by gamma irradiation, Eur. Phys. J. Appl. Phys., 92 (2), 20402 (2020); https://doi.org/10.1051/epjap/2020200201.

G.G. Politano, C. Versace, Electrical and Optical Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films, Crystals, 12, 1312 (2022); https://doi.org/10.3390/cryst12091312.

A. K. Jha, K. Prasad, and K. Prasad, A green low-cost biosynthesis of Sb2O3 nanoparticles,‖ Biochem. Eng. J., 43(3), 303 (2009); https://doi.org/10.1016/j.bej.2008.10.016.

T.A. Abdel-Baset, A. Hassen, Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film, Physica B, 499, 24 (2016); http://dx.doi.org/10.1016/j.physb.2016.07.002.

P. Beena and H. S. Jayanna, Dielectric studies and AC conductivity of piezoelectric barium titanate ceramic polymer composites, Polymers and Polymer Composites, 27(9) 619 (2019); https://doi.org/10.1177/0967391119856140.

A. Qureshi1, A. Mergen1 and B. Aktas, Dielectric and magnetic properties of YIG/PMMA nanocomposites, Journal of Physics: Conference Series, 153, 1 (2009); https://doi.org/10.1088/1742-6596/153/1/012061.

N.K. Abbas, M.A. Habeeb, and A.J.K. Algidsawi, Preparation of chloro penta amine cobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate, International Journal of polymer Science, 2015, 926789 (2015); htt ps://doi.org/10.1155/2015/926789.

D.Vaishnav1 and R. K. Goyal, Thermal and Dielectric Properties of High-Performance Polymer/ZnO Nanocomposites, IOP Conf. Series: Journal of Materials Science and Engineering, 64, 1 (2014); ); https://doi.org/10.1088/1757-899X/64/1/012016.

A. Srivastava, K. Kumar Jana, P. Maiti, D. Kumar, and O. Parkash, Investigations on Structural, Mechanical, and Dielectric Properties of PVDF/Ceramic Composites, Journal of Engineering, 2015, Article ID 205490, 9 (2015); https://doi.org/10.1155/2015/205490.

E .Abdelrazek, Elashmawi I, Hezma A, Rajeh A, Kamal M, Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites, Phys B Condens Matter., 502, 48 (2016), https://doi.org/10.1016/j.physb.2016.08.040.

A .Rajeh, HM Ragab, MM Abutalib. Co doped ZnO reinforced PEMA/PMMA composite: structural, thermal, dielectric and electrical properties for electrochemical applications, J Mol Struct., 1217, 128447 (2020); https://doi.org/10.1016/j.molstruc.2020.128447.

S. Ju1, M. Chen1, H. Zhang and Z. Zhang, Dielectric properties of nano silica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles, Journal of express Polymer Letters, 8(9), 682 (2014), https://doi.org/10.3144/expresspolymlett.2014.71.

.Chakraborty, K. Gupta, D. Rana and A. Kumar Meikap, Dielectric relaxation in polyvinyl alcohol–polypyrrole–multiwall carbon nanotube composites below room temperature, Advances in Natural Sciences, 4, 1 (2014); http://dx.doi.org/10.1088/2043-6262/4/2/025005.

P. Vasudevan, S. Thomas, K. Arunkumar, S. Karthika and N. Unnikrishnan, Synthesis and dielectric studies of poly (vinyl pyrrolidone) /titanium dioxide nanocomposites, Journal of Materials, Science and Engineering, 73, 1, (2015); https://doi.org/10.1088/1757-899X/73/1/012015.

I. Tantis, G. Psarras and D. Tasis, Functionalized graphene poly (vinyl alcohol) nanocomposites: Physical and dielectric properties, Journal of express Polymer Letters, 6(4), 283 (2012); https://doi.org/10.3144/expresspolymlett.2012.31.

C. M. Mathew, K. Kesavan, and S. Rajendran, Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes, International Journal of Electrochemistry, 2015, Article ID 494308, 7, (2015); https://doi.org/10.1155/2015/494308.

P. Pradeepa and M. Ramesh Prabhu, Investigations on the Addition of Different Plasticizers in poly (ethylmethacrylate)/poly (vinylidene fluoride-co-hexa fluro propylene) Based Polymer Blend Electrolyte System, International Journal of Chemical Technology Research, 7(4), 2077 (2015);

M.A. Habeeb, A. Hashim, and A. Hadi, Fabrication of New Nanocomposites: CMC-PAA-PbO2 Nanoparticles for Piezoelectric Sensors and Gamma Radiation Shielding Applications, Sensor Letters, 15(9), (2017); https://doi.org/10.1166/sl.2017.3877.

Hojjat and A. Mahmood and Borhani, Effect of EVA Content upon the Dielectric Properties in LDPE-EVA Films, International Journal of Engineering Research, 4 (2), 69 (2015); https://doi.org/10.17950/ijer/v4s2/206.

K. J. Kadhim, I. R. Agool, & A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application, Journal of Advanced Physics, 6(2), 187 (2017); https://doi.org/10.1166/jap.2017.1313.

O. Abdullah, G. M. Jamal, D. A. Tahir and S. R. Saeed, Electrical Characterization of Polyester Reinforced by Carbon Black Particles, International Journal of Applied Physics and Mathematics, 1 (2), 101 (2011); https://doi.org/10.7763/IJAPM.2011.V1.20.

N. Hayder, M.A. Habeeb, and A. Hashim, Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites, Egyptian Journal of Chemistry, 63, 577 (2020), https://doi.org/10.21608/EJCHEM.2019.14646.1887.

Qayssar M. Jebur, Ahmed Hashim and Majeed A. Habeeb, Fabrication, Structural and Optical Properties for (PolyvinylAlcohol–Polyethylene Oxide–Iron Oxide) Nanocomposites, Egypt. J. Chem., 63(2), (2020); https://doi.org/ 10.21608/ejchem.2019.10197.1669.

How to Cite
SaburD. A., HabeebM. A., & HashimA. (2023). Fabrication and Tailoring the Structural and Dielectric Characteristics of GO/Sb2O3/PMMA/PC Quaternary Nanostructures For Solid State Electronics Nanodevices . Physics and Chemistry of Solid State, 24(1), 173-180. https://doi.org/10.15330/pcss.24.1.173-180
Scientific articles (Physics)