Bacteria inactivation using spinel cobalt ferrite catalyst

Authors

  • Nazarii Danyliuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Ivanna Lapchuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Tetiana Tatarchuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Roman Kutsyk Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Volodymyr Mandzyuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.2.256-261

Keywords:

fixed-bed reactor, E.coli, cobalt ferrite, hydrogen peroxide, bacteria inactivation

Abstract

The E. coli inactivation using hydrogen peroxide (H2O2) and cobalt ferrite granulated catalyst was investigated in a fixed-bed flow reactor. CoFe2O4 catalyst was synthesized by the co-precipitation method, granulated, and annealed at 1150°C. X-ray diffraction analysis was used to identify the crystal structure of the catalyst. CoFe2O4 catalyst demonstrates good catalytic activity for bacteria inactivation in the presence of H2O2. An increase in the hydrogen peroxide concentration increases the inactivation efficiency. The reactor demonstrates the E. coli inactivation of 99.94% at the H2O2 hydrogen peroxide concentration of 15 mM and initial bacterial concentration of 6·103 CFU/L. The water disinfection using a fixed-bed reactor demonstrates the broad prospects for industrial use.

References

J. Rodríguez-Chueca, E. Barahona-García, V. Blanco-Gutiérrez, L. Isidoro-García, A.J. Dos santos-García, Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater, Chem. Eng. J., 398, 125606 (2020); https://doi.org/10.1016/j.cej.2020.125606.

L. Fernández, J. González-Rodríguez, M. Gamallo, Z. Vargas-Osorio, C. Vázquez-Vázquez, Y. Piñeiro, J. Rivas, G. Feijoo, M.T. Moreira, Iron oxide-mediated photo-Fenton catalysis in the inactivation of enteric bacteria present in wastewater effluents at neutral pH, Environ. Pollut., 266, (2020); https://doi.org/10.1016/j.envpol.2020.115181.

P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review, RSC Adv., 5, 40552 (2015); https://doi.org/10.1039/c5ra02023a.

N. Verma, S. Vaidh, G.S. Vishwakarma, A. Pandya, Antimicrobial nanomaterials for water disinfection, Nanotoxicity,) 365(2020); https://doi.org/10.1016/b978-0-12-819943-5.00018-x.

J.A.Z. and J.J.R. P Bautista, A F Mohedano, J A Casas, An overview of the application of Fenton oxidation to industrial wastewaters treatment, J. Chem. Technol. Biotechnol., 83, 1323 (2008); https://doi.org/doi:10.1002/jctb.1988.

A. Basu, M. Behera, R. Maharana, M. Kumar, N.K. Dhal, A.J. Tamhankar, A. Mishra, C. Stålsby Lundborg, S.K. Tripathy, To unsnarl the mechanism of disinfection of Escherichia coli via visible light assisted heterogeneous photo-Fenton reaction in presence of biochar supported maghemite nanoparticles, J. Environ. Chem. Eng., 9 (2021); https://doi.org/10.1016/j.jece.2020.104620.

N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton catalysts: A review of recent advances, J. Hazard. Mater., 404, 124082 (2021); https://doi.org/10.1016/j.jhazmat.2020.124082.

I. de la Obra Jiménez, S. Giannakis, D. Grandjean, F. Breider, G. Grunauer, J.L. Casas López, J.A. Sánchez Pérez, C. Pulgarin, Unfolding the action mode of light and homogeneous vs. heterogeneous photo-Fenton in bacteria disinfection and concurrent elimination of micropollutants in urban wastewater, mediated by iron oxides in Raceway Pond Reactors, Appl. Catal. B Environ., 263 (2020); https://doi.org/10.1016/j.apcatb.2019.118158.

C.S. Nóbrega, S.R. Pauleta, Reduction of hydrogen peroxide in gram-negative bacteria – bacterial peroxidases, Adv. Microb. Physiol. 74, 415 (2019); https://doi.org/10.1016/bs.ampbs.2019.02.006.

Y. Liu, Z. Guo, F. Li, Y. Xiao, Y. Zhang, T. Bu, P. Jia, T. Zhe, L. Wang, Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy, ACS Appl. Mater. Interfaces, 11, 31649 (2019); https://doi.org/10.1021/acsami.9b10096.

T. Tatarchuk, N. Danyliuk, I. Lapchuk, W. Macyk, A. Shyichuk, R. Kutsyk, V. Kotsyubynsky, V. Boichuk, Oxytetracycline removal and E . Coli inactivation by decomposition of hydrogen peroxide in a continuous fixed bed reactor using heterogeneous catalyst, J. Mol. Liq., 366, 120267 (2022); https://doi.org/10.1016/j.molliq.2022.120267.

X. Huang, X. Hou, J. Zhao, L. Zhang, Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span, Appl. Catal. B Environ, 181, 127 (2016); https://doi.org/10.1016/J.APCATB.2015.06.061.

G.D.L.P. Vargas, U. Federal, C. Erechim, A. Dom, J. Hoffmann, E. Rs, Kinetics of Escherichia coli and total coliform inactivation by oxidation with hydrogen peroxide, Quím. Nova, 36, 252 (2013); https://doi.org/10.1590/S0100-40422013000200009.

A. Wright, B. Uprety, A. Shaw, G. Shama, F. Iza, Effect of humic acid on E. coli disinfection in a microbubble-gas plasma reactor, J. Water Process Eng., 31, 100881 (2019); https://doi.org/10.1016/j.jwpe.2019.100881.

L.Y. Ozer, A. Yusuf, J.M. Uratani, B. Cabal, L.A. Díaz, R. Torrecillas, J.S. Moya, J. Rodríguez, G. Palmisano, Water microbial disinfection via supported nAg/Kaolin in a fixed-bed reactor configuration, Appl. Clay Sci., 184 (2020); https://doi.org/10.1016/j.clay.2019.105387.

C. Pablos, R. Van Grieken, J. Marugán, B. Moreno, Photocatalytic inactivation of bacteria in a fixed-bed reactor: Mechanistic insights by epifluorescence microscopy, Catal. Today, 161, 133 (2011); https://doi.org/10.1016/j.cattod.2010.10.051.

I. Thakur, A. Verma, B. Örmeci, Mathematical modeling of E. coli inactivation in water using Fe-TiO2 composite in a fixed bed reactor, Sep. Purif. Technol., 260 (2021); https://doi.org/10.1016/j.seppur.2020.118242.

S. Bharti, S. Mukherji, S. Mukherji, Water disinfection using fixed bed reactors packed with silver nanoparticle immobilized glass capillary tubes, Sci. Total Environ., 689, 991 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.482.

S. Raffellini, M. Schenk, S. Guerrero, S.M. Alzamora, Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations, Food Control., 22, 920 (2011); https://doi.org/10.1016/j.foodcont.2010.11.027.

S. Mitra, P.S. Veluri, A. Chakraborthy, R.K. Petla, Electrochemical Properties of Spinel Cobalt Ferrite Nanoparticles with Sodium Alginate as Interactive Binder, ChemElectroChem., 1, 1068 (2014); https://doi.org/10.1002/celc.201400026.

S. Zhao, D. Ma, Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate, J. Nanomater., 2010, (2010); https://doi.org/10.1155/2010/842816.

M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.M. El-Khawaga, M. Abd Elkodous, A. Abokhadra, M.A. Elsayed, M. Gobara, L.I. Soliman, H.H. El-Bahnasawy, A.H. Ashour, Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials, J. Hazard. Mater., 399, 123000 (2020); https://doi.org/10.1016/j.jhazmat.2020.123000.

Downloads

Published

2023-05-14

How to Cite

Danyliuk, N., Lapchuk, I., Tatarchuk, T., Kutsyk, R., & Mandzyuk, V. (2023). Bacteria inactivation using spinel cobalt ferrite catalyst . Physics and Chemistry of Solid State, 24(2), 256–261. https://doi.org/10.15330/pcss.24.2.256-261

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)