Effect of Mn2+ substitution on catalytic properties of Fe3-xMnxO4 nanoparticles synthesized via co-precipitation method

Authors

  • Nazarii Danyliuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Ivanna Lapchuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Volodymyr Kotsyubynsky Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Volodymyra Boychuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Viktor Husak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.748-760

Keywords:

catalyst, Mn-substituted magnetite, hydrogen peroxide, electromagnetic heating, E. coli, Daphnia magna

Abstract

Mn-substituted magnetite samples Fe3-xMnxO4 (x = 0.0; 0.02; 0.05; 0.1; 0.15; 0.2; 0.25) were synthesized using the co-precipitation method. X-ray diffraction patterns confirmed the formation of pure, well-crystallized manganese ferrite with a cubic spinel structure. The crystallites size increases sharply for the minimum degrees of substitution, with a subsequent tendency to decrease with the growth of manganese ions content. The catalytic properties of Fe3-xMnxO4 were investigated for the degradation of oxytetracycline (ОТС) and inactivate E. coli. There is a correlation between particle size and catalytic activity. The Fe2.95Mn0.05O4 sample exhibited the highest catalytic activity in the destruction of OTC. The effect of electromagnetic heating (EMH) on the catalytic properties of iron oxides were investigated. The Fe2.9Mn0.1O4 sample with electromagnetic heating achieved 100 % efficiency in decomposing 5 mg/L of OTC. Fe3-xMnxO4 samples reduce the number of Gram-negative bacteria E. coli at concentrations of 104 and 106 CFU/mL. Electromagnetic heating experiments demonstrated high performance, achieving inactivation of 6 logs of E. coli in the presence of Fe2.98Mn0.02O4 and Fe2.95Mn0.05O4 catalysts within 135 minutes. Studies on ecotoxicity have shown that Daphnia magna is a sensitive bioindicator of residual H2O2 concentration. An increase in the Mn2+ content in the synthesized catalysts resulted in a decrease in the toxicity of purified water. The study suggests that Mn-substituted magnetite catalysts are effective materials for catalytic decomposition of OTC and inactivation of E. coli bacteria.

References

S. Rahim Pouran, A.A. Abdul Raman, W.M.A. Wan Daud, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Clean. Prod. 64, 24 (2014); https://doi.org/10.1016/j.jclepro.2013.09.013.

E.M.R. Rocha, V.J.P. Vilar, A. Fonseca, I. Saraiva, R.A.R. Boaventura, Landfill leachate treatment by solar-driven AOPs, Sol. Energy. 85, 46 (2011); https://doi.org/10.1016/j.solener.2010.11.001.

X. Wang, L. Zhang, Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system, RSC Adv. 8, 40632(2018); https://doi.org/10.1039/C8RA08511K.

C. Ruales-Lonfat, J.F. Barona, A. Sienkiewicz, M. Bensimon, J. Vélez-Colmenares, N. Benítez, C. Pulgarín, Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH, Appl. Catal. B Environ. 166–167, 497 (2015); https://doi.org/10.1016/j.apcatb.2014.12.007.

S. Natarajan, K. Harini, G.P. Gajula, B. Sarmento, M.T. Neves-Petersen, V. Thiagarajan, Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications, BMC Mater. 1, 1 (2019); https://doi.org/10.1186/s42833-019-0002-6.

G. Sathishkumar, V. Logeshwaran, S. Sarathbabu, P.K. Jha, M. Jeyaraj, C. Rajkuberan, N. Senthilkumar, S. Sivaramakrishnan, Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities, Artif. Cells, Nanomedicine Biotechnol. 46, 589 (2018); https://doi.org/10.1080/21691401.2017.1332635.

K. Hanna, T. Kone, G. Medjahdi, Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation, Catal. Commun. 9, 955 (2008); https://doi.org/10.1016/j.catcom.2007.09.035.

H.H. Huang, M.C. Lu, J.N. Chen, Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides, Water Res. 35, 2291 (2001); https://doi.org/10.1016/S0043-1354(00)00496-6.

J. Du, J. Bao, Y. Liu, S.H. Kim, D.D. Dionysiou, Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation, Chem. Eng. J. 376, 119193 (2019); https://doi.org/10.1016/j.cej.2018.05.177.

Y. Li, J. He, K. Zhang, P. Hong, C. Wang, Oxidative degradation of sulfamethoxazole antibiotic catalyzed by porous magnetic manganese ferrite nanoparticles : mechanism and by-products identification, J. Mater. Sci. 55, 13767 (2020); https://doi.org/10.1007/s10853-020-05000-y.

X. Peng, J. Qu, S. Tian, Y. Ding, X. Hai, B. Jiang, Green fabrication of magnetic recoverable graphene/MnFe2O4 hybrids for efficient decomposition of methylene blue and the Mn/Fe redox synergetic mechanism, RSC Adv. 6, 104549 (2016); https://doi.org/10.1039/C6RA24320G.

C. Lai, F. Huang, G. Zeng, D. Huang, L. Qin, M. Cheng, C. Zhang, B. Li, H. Yi, S. Liu, L. Li, Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH, Chemosphere. 224, 910 (2019); https://doi.org/10.1016/j.chemosphere.2019.02.193.

Z. Chen, Y. Zheng, Y. Liu, W. Zhang, Y. Wang, X. Guo, X. Tang, Y. Zhang, Z. Wang, T. Zhang, Magnetic Mn-Doped Fe3O4 hollow Microsphere / RGO heterogeneous Photo-Fenton Catalyst for high efficiency degradation of organic pollutant at neutral pH, Mater. Chem. Phys. 238, 121893 (2019); https://doi.org/10.1016/j.matchemphys.2019.121893.

G.X. Huang, C.Y. Wang, C.W. Yang, P.C. Guo, H.Q. Yu, Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe, Environ. Sci. Technol. 51, 12611 (2017); https://doi.org/10.1021/acs.est.7b03007.

F. Ameen, A. Aygun, A. Seyrankaya, R.N. Elhouda Tiri, F. Gulbagca, İ. Kaynak, N. Majrashi, R. Orfali, E.N. Dragoi, F. Sen, Photocatalytic investigation of textile dyes and E. coli bacteria from wastewater using Fe3O4@MnO2 heterojunction and investigation for hydrogen generation on NaBH4 hydrolysis, Environ. Res. 220, 115231 (2023); https://doi.org/10.1016/j.envres.2023.115231.

T. Tatarchuk, N. Danyliuk, I. Lapchuk, W. Macyk, A. Shyichuk, R. Kutsyk, V. Kotsyubynsky, V. Boichuk, Oxytetracycline removal and E . Coli inactivation by decomposition of hydrogen peroxide in a continuous fixed bed reactor using heterogeneous catalyst, J. Mol. Liq. 366, 120267 (2022); https://doi.org/10.1016/j.molliq.2022.120267.

T. Tatarchuk, A. Shyichuk, N. Danyliuk, M. Naushad, V. Kotsyubynsky, V. Boychuk, Cobalt ferrite as an electromagnetically boosted metal oxide hetero-Fenton catalyst for water treatment, Chemosphere. 326, 138364 (2023); https://doi.org/10.1016/j.chemosphere.2023.138364.

ISO 6341:2012 Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test, BSI Stand. Publ. (2012).

J. Li, H. Yuan, G. Li, Y. Liu, J. Leng, Cation distribution dependence of magnetic properties of solgel prepared MnFe2O4 spinel ferrite nanoparticles, J. Magn. Magn. Mater. 322, 3396 (2010); https://doi.org/10.1016/j.jmmm.2010.06.035.

C. Simon, A. Blösser, M. Eckardt, H. Kurz, B. Weber, M. Zobel, R. Marschall, Magnetic properties and structural analysis on spinel MnFe2O4 nanoparticles prepared via non-aqueous microwave synthesis, Zeitschrift Fur Anorg. Und Allg. Chemie. 647, 2061 (2021); https://doi.org/10.1002/zaac.202100190.

T. Tatarchuk, N. Danyliuk, A. Shyichuk, V. Kotsyubynsky, I. Lapchuk, Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide, Emergent Mater. 5, 89 (2021); https://doi.org/10.1007/s42247-021-00323-1.

M. Czaja, R. Lisiecki, R. Juroszek, T. Krzykawski, Luminescence properties of tetrahedral coordinated Mn2+; genthelvite and willemite examples, Minerals. 11, 1215 (2021); https://doi.org/10.3390/min11111215.

K.S.A. Kumar, R.N. Bhowmik, S.H. Mahmood, Role of pH value during chemical reaction, and site occupancy of Ni2+ and Fe3+ ions in spinel structure for tuning room temperature magnetic properties in Ni1.5Fe1.5O4 ferrite, J. Magn. Magn. Mater. 406, 60 (2016); https://doi.org/10.1016/j.jmmm.2015.12.100.

R. Zapukhlyak, M. Hodlevsky, V. Boychuk, J. Mazurenko, V. Kotsyubynsky, L. Turovska, B. Rachiy, S. Fedorchenko, Structure and magnetic properties of hydrothermally synthesized CuFe2O4 and CuFe2O4/rGO composites, J. Magn. Magn. Mater. 587, 171208 (2023); https://doi.org/10.1016/j.jmmm.2023.171208.

R.S. De Biasi, L.H.G. Cardoso, A simple model for the magnetocrystalline anisotropy in mixed ferrite nanoparticles, Phys. B Phys. Condens. Matter. 407, 3893 (2012); https://doi.org/10.1016/j.physb.2012.06.017.

C. Iacovita, A. Florea, L. Scorus, E. Pall, R. Dudric, A.I. Moldovan, R. Stiufiuc, R. Tetean, C.M. Lucaciu, Hyperthermia, cytotoxicity and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process, Nanomaterials. 9, 1489 (2019); https://doi.org/10.3390/nano9101489.

B.D. Cullity, C.D. Graham, Introduction to magnetic materials, John Wiley Sons. (2011); https://doi.org/10.1002/9780470386323.

P. García-Negueroles, S. García-Ballesteros, A.M. Amat, E. Laurenti, A. Arques, L. Santos-Juanes, Unveiling the Dependence between Hydroxyl Radical Generation and Performance of Fenton Systems with Complexed Iron, ACS Omega. 4; 21698 (2019); https://doi.org/10.1021/acsomega.9b02241.

Y.D. Dong, Y. Shi, Y.L. He, S.R. Yang, S.Y. Yu, Z. Xiong, H. Zhang, G. Yao, C.S. He, B. Lai, Synthesis of Fe-Mn-Based Materials and Their Applications in Advanced Oxidation Processes for Wastewater Decontamination: A Review, Ind. Eng. Chem. Res. 62, 10828 (2023); https://doi.org/10.1021/acs.iecr.3c01624.

S. Anothairungrat, S. Ouajai, K. Piyamongkala, Screening Test of Evaluation Thermal Hazard for H2O2 by DSC, IOP Conf. Ser. Earth Environ. Sci. 219, 012017 (2019); https://doi.org/10.1088/1755-1315/219/1/012017.

E.S. Reichwaldt, L. Zheng, D.J. Barrington, A. Ghadouani, Acute Toxicological Response of Daphnia and Moina to Hydrogen Peroxide, J. Environ. Eng. 138, 607 (2012); https://doi.org/10.1061/(asce)ee.1943-7870.0000508.

Downloads

Published

2023-12-21

How to Cite

Danyliuk, N., Lapchuk, I., Kotsyubynsky, V., Boychuk, V., & Husak, V. (2023). Effect of Mn2+ substitution on catalytic properties of Fe3-xMnxO4 nanoparticles synthesized via co-precipitation method. Physics and Chemistry of Solid State, 24(4), 748–760. https://doi.org/10.15330/pcss.24.4.748-760

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)