Solid – phase equilibria and thermodynamic properties of the Sb-Te-S system
DOI:
https://doi.org/10.15330/pcss.25.1.26-34Keywords:
antimony sulfide, antimony telluride, Sb2Te2S, tetradymite, EMF measurements, thermodynamic propertiesAbstract
The powder X-ray diffraction (PXRD) analysis and the electromotive force (emf) measurements have been used to investigate the Sb–Te–S system in the Sb2S3-Sb2Te3-Te-S composition region at 300–450 K temperatures interval. Relative partial molar functions of antimony in alloys have been calculated and obtained data have been used to get self-consistent sets of the standard Gibbs free energy, standard enthalpy, and standard entropy of the Sb2S3 and Sb2Te2S compounds, as well as the Sb2Te2,4S0,6 and Sb2Te2,7S0,3 solid solutions. The data obtained for Sb2S3 have been compared to the ones available in the literature. Thermodynamic functions of the Sb2Te2S compound, as well as, the Sb2Te2,4S0,6 and Sb2Te2,7S0,3 solid solutions have been determined for the first time.
References
J. Sung-Jae, R. Byungki, S. Ji-Hee, J. Lee, B. Min, B. Kim, Highly anisotropic thermoelectric transport properties responsible for enhanced thermoelectric performance in the hot-deformed tetradymite Bi2Te2S, Journal of Alloys and Compounds. 783, 448 (2019); https://doi.org/10.1016/j.jallcom.2018.12.340.
A. Asif, H. Naqib, A DFT based first-principles investigation of optoelectronic and structural properties of Bi2Te2Se, Physica Scripta. 96(4), 045810 (2021); https://doi.org/ 10.1088/1402-4896/abe2d2.
L. Peng, K. Pei, et al., Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity, Sci. China-Mater. 64, 3017 (2021); https://doi.org/10.1007/s40843-021-1695-x.
X. Bin, Q. Xia, et al., High figure of merit of monolayer Sb2Te2Se of ultra low lattice thermal conductivity, Computational Materials Science. 177, 109588 (2020); https://doi.org/10.1016/j.commatsci.2020.109588.
R. Samrat, S. Manna, et al., Photothermal Control of Helicity-Dependent Current in Epitaxial Sb2Te2Se Topological Insulator Thin-Films at Ambient Temperature, ACS Applied Materials & Interfaces. 14 (7), 9909 (2022); https://doi.org/10.1021/acsami.1c24461.
J. Reimann, K. Kuroda, et al., Spectroscopy and dynamics of unoccupied electronic states of the topological insulators Sb2Te3 and Sb2Te2S, Physical Review B., 90(8), 081106 (2014); https://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.039903.
M. Kanagaraj, P. Amit, et al., Structural, magnetotransport and Hall coefficient studies in ternary Bi2Te2Se, Sb2Te2Se and Bi2Te2S tetradymite topological insulating compounds, Journal of Alloys and Compounds. 794, 195 (2019); https://doi.org/10.1016/j.jallcom.2019.04.226.
M. Joel., The birth of topological insulators, Nature. 464, 7286 (2010); https://www.nature.com/articles/nature08916.
H. Zahid, J. Moore, E. Annu., Three-Dimensional Topological Insulators, Rev. Condens. Matter Phys., 2(1), 55 (2011); https://doi.org/10.1146/annurev-conmatphys-062910-140432.
R. Stephan, Interacting topological insulators: a review, Reports on Progress in Physics. 81(11), 116501 (2018); https://iopscience.iop.org/article/10.1088/1361-6633/aad6a6/meta.
E. V. Chulkov, Z. S. Aliev, A. V. Shevelkov, I. R. Amiraslanov, Phase diagrams in materials science of topological insulators based on metal chalcogenides, Russian Journal of Inorganic Chemistry 62, 1703 (2017); https://doi.org/10.1134/S0036023617130034.
E. Orujlu, Z. Aliev, M. Babanly, The phase diagram of the MnTe–SnTe–Sb2Te3 ternary system and synthesis of the iso- and aliovalent cation-substituted solid solutions, Calphad., 76, 102398 (2022); https://doi.org/10.1016/j.calphad.2022.102398.
A. Shikin, A. Estyunin, I. Klimovskikh, et al., Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4, Scientific Reports. 10(1), 13226 (2020); https://doi.org/10.1038/s41598-020-70089-9.
I. Klimovskikh, O. Mikhail, et al., Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family, npj Quantum Materials. 5(1), 54 (2020); https://doi.org/10.1038/s41535-020-00255-9.
T. Alakbarova, E. Orujlu, D. Babanly, Solid-phase equilibria in the GeBi2Te4-Bi2Te3-Te system and thermodynamic properties of compounds of the GeTe·mBi2Te3 homologous series, Physics and Chemistry of Solid State. 23(1), 25 (2022); https://doi.org/10.15330/pcss.23.1.25-33.
D. Pacilè, S. Eremeev, M. Caputo, et al. Deep Insight Into the Electronic Structure of Ternary Topological Insulators: A Comparative Study of PbBi4Te7 and PbBi6Te10, Physica status solidi (RRL)–Rapid Research Letters, б12(12), 1800341 (2018); https://doi.org/10.1002/pssr.201800341.
L. Shelimova, G. Karpinskii, P. Konstantinov, et al, Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) Systems, Inorganic Materials. 40, 451 (2004); https://doi.org/10.1023/B:INMA.0000027590.43038.a8.
S. Zemskov, E. Shelimova, P. Konstantinov, et al., Thermoelectric materials based on layered chalcogenides of bismuth and lead, Inorganic Materials: Applied Research, 3, 61 (2012); https://doi.org/10.1134/S2075113312010133;
B. Xu, L. Song, G. Peng, et al., Thermoelectric performance of monolayer Bi2Te2Se of ultra low lattice thermal conductivity, Physics Letters A, 383(28), 125864 (2019); https://doi.org/10.1016/j.physleta.2019.125864.
S. Yixuan, C. Sturm, H. Kleinke. Chalcogenides as thermoelectric materials, Journal of Solid State Chemistry. 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.
C. Ying, et al., Renormalized thermoelectric figure of merit in a band-convergent Sb2Te2Se monolayer: full electron–phonon interactions and selection rules, Journal of Materials Chemistry A., 9(29), 16108 (2021); https://doi.org/10.1039/D1TA02107A.
R. Medha, D. Jana, D. Banerjee, General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials, Journal of Materials Chemistry A 10(13), 6872 (2022); https://doi.org/10.1039/D1TA10421G.
X. Ning, Y. Xu, Topological insulators for thermoelectrics, J. Zhu. npj Quantum Materials 2(1), 51 (2017); https://doi.org/10.1038/s41535-017-0054-3.
Y. Ivanov, A. Burkov, D. Pshenay‐Severin., Thermoelectric Properties of Topological Insulators, Physica status solidi (b) 255(7), 1800020 (2018); https://doi.org/10.1002/pssb.201800020.
H. Joseph, R. Cava, N. Samarth, Tetradymites as thermoelectrics and topological insulators, Nature Reviews Materials, 2(10), 17049 (2017); https://doi.org/10.1038/natrevmats.2017.49.
Y. Ming, H. Zhou, J. Wang, Topological insulators photodetectors: Preparation, advances and application challenges, Materials Today Communications. 33, 104190 (2022); https://doi.org/10.1016/j.mtcomm.2022.104190.
H. Mengyun, H. Sun, Q.L. He., Topological insulator: Spintronics and quantum computations, Frontiers of Physics 14. 43401 (2019); https://doi.org/10.1007/s11467-019-0893-4.
T. Wenchao, W. Yu, et al., The Property, Preparation and Application of Topological Insulators: A Review, Materials 10(7), 814 (2017); https://doi.org/10.3390/ma10070814.
L. Viti, D. Coquillat, A. Politano, K.A. Kokh, Z. Aliev, M. Babanly, E. Oleg, et al., Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States, Nano Lett. 16, 80, (2016); https://doi.org/10.1021/acs.nanolett.5b02901.
Y. Chenxi, S. Jiang, et al., Device Applications of Synthetic Topological Insulator Nanostructures, Electronics. 7(10), 225 (2018); https://doi.org/10.3390/electronics7100225.
G. F Voronin, I. Y. Gerasimov, The role of chemical thermodynamics in the development of semiconductor materials science, Thermodynamics and Semiconductor Material Science. Moscow: MIET Publ. 3, (1980).
M.B. Babanly, L.F. Mashadiyeva, D.M. Babanly, S.Z. Imamaliyeva, D.B. Tagiev, Yu.A. Yusibov., Some Issues of Complex Studies of Phase Equilibria and Thermodynamic Properties in Ternary Chalcogenide Systems Involving Emf Measurements (Review), Russ. J. Inorg. Chem, 64(13), 1649 (2019); https://doi.org/10.1134/S0036023619130035.
I. Barin. Thermochemical Data of Pure Substances, 3rd edition Wiley-VCH, (2008).
G.K. Johnson, G.N. Papatheodorou, C.E. Johnson., The enthalpies of formation of SbF5(l) and Sb2S3(c) and the high-temperature thermodynamic functions of Sb2S3(c) and Sb2S3(l), J. Chem. Thermodyn. 13(8), 745 (1981); https://doi.org/10.1016/0021-9614(81)90063-X.
V.S. Iorish, V.S. Yungman. (Eds.) Thermal constants of substances: Database. Version 2 (2006) (http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html.)
F. Aliyev, E. Orujlu, D. Babanly., Thermodynamic Properties of the Sb2Te3 compound, Azerbaijan Chemical Journal. 4, 53 (2021); doi.org/10.32737/0005-2531-2021-4-53-59.
Y. Jafarov, M. Babanly, et al., Study of the 3Tl2S + Sb2Te3 ↔ 3Tl2Te + Sb2S3 reciprocal system, Journal of alloys and compounds. 582, 659 (2014); https://doi.org/10.1016/j.jallcom.2013.07.141.
D. Grauer, et al., Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution, Materials Research Bulletin., 44(9), 1926 (2009); https://doi.org/10.1016/j.materresbull.2009.05.002.
F. Aliyev, E. Orujlu, D. Babanly, et al., An update phase diagram of the Sb2Te3-Sb2S3 system, Jomard publishing. New Materials, Compounds and Applications. 7(2), 76 (2023); http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/v7n2/Aliyev_et_al.pdf.
A.G. Morachevsky, G.F. Voronin, V.A. Geyderich, I.B. Kutsenok, Electrochemical methods of investigation in thermodynamics of metal systems. Akademkniga Publ, Moscow, (2003).
V. Vassiliev, W. Gong. Electrochemical Cells with the Liquid Electrolyte in the Study of Semiconductor, Metallic and Oxide Systems, Electrochemical Cells–New Advances in Fundamental Researches and Applications. Ed. Yan Shao, IntechOpen. 71 (2012); https://doi.org/10.5772/39007.
D. Babanly, G. Veliyeva, S. Imamaliyeva, M. Babanly. Thermodynamic functions of arsenic selenides, Russian Journal of Physical Chemistry A. 91, 1170 (2017); https://doi.org/10.1134/S0036024417070044.
S. Imamaliyeva, D. Babanly, et al., Thermodynamic Properties of Tl9GdTe6 and TlGdTe2, Russian Journal of Physical Chemistry A. 92, 2111 (2018); https://doi.org/10.1134/S0036024418110158.
S. Imamaliyeva, I. Mehduyeva, et al., Thermodynamic investigations of the erbium tellurides by EMF method, Physics and chemistry of solid state. 21(2), 312 (2020); https://doi.org/10.15330/pcss.21.2.312-318.
Z.S. Aliev, S.S. Musayeva, S.Z. Imamaliyeva, M.B. Babanly, Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid, J. Therm. Anal. Calorim. 133(2), 1115 (2018); https://doi.org/10.1007/s10973-017-6812-4.
S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Tagiyev, M.B. Babanly, Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as electrolyte, Thermochimica Acta 679, 178319 (2019); https://doi.org/10.1016/j.tca.2019.178319.
T.B. Massalski, J. L. Murray Bennett, Binary alloy phase diagrams Materials park, ASM International, Materials Park, OH, USA. 12, (1990).
F.Aliyev, D. Babanly, et. al, Layered High-Entropy Alloys Based on Antimony and Bismuth Chalcogenides, Nova Science Publishers Properties and Uses of Antimony. 73 (2022); https://doi.org/ 10.52305/BMLN5323)
M.B. Babanly, A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic Systems. (Elm, Baku, 2011).
E.Ahmadov, D. Babanly, S. Imamaliyeva, et al., Thermodynamic Properties of the Chalcogenide Phases in the Bi–Te–S System, Inorganicnic Materials. 57, 227 (2021); https://doi.org/10.1134/S0020168521030018.
M.Babanly, A.Kuliyev. Mathematical Problems in Chemical Thermodynamics, Novosibirsk, Nauka, Siberian Section. 192 (1985).
K. Derffel. Statistics in Analytical Chemistry. Mir; Moscow, Russia. 268 (1994).
A.N.Kornilov, L.B.Stepina, V.A. Sokolov, Recommendations on compact representation of experi mental data in reports on thermochemical and thermo dynamic studies, Zh. Fiz. Khim. 46(11), 2974 (1972).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 F.R. Aliyev, E.N. Orujlu, L.F. Mashadiyeva, G.B. Dashdiyeva, D.M. Babanly
This work is licensed under a Creative Commons Attribution 3.0 Unported License.