Investigation of the effect of carbonization temperature of plant biomass on the electrochemical properties of carbon material

Authors

  • N.Ya. Ivanichok Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • O.M. Ivanichok Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • I.M. Budzulyak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • P.I. Kolkovskyi V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • O.A. Vyshnevskyi M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • D.S. Borchuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • I.I. Ivaniv Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • A.M. Soltys Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.57-64

Keywords:

porous carbon material, supercapacitor, cyclic voltammetry, specific capacitance

Abstract

Porous carbon materials (PСM) with different pore distributions in size and size of the specific surface area up to 250 m2/g were obtained by changing the carbonization temperature of plant biomass, namely walnut shells. The electrodes of electrochemical supercapacitors are formed based on the obtained carbon materials. The electrochemical behavior of PCM in 33% aqueous KOH solution has been studied by cyclic voltammetry and galvanostatic discharge-discharge methods and the value of their specific capacitance. The physicochemical processes occurring at the carbon electrode/electrolyte interface have been investigated by the method of impedance spectroscopy.

References

C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293 (2005); https://doi.org/10.1016/j.carbon.2004.12.028.

R. Kot,M. Carlen, Principle and application of electrochemical capacitors, Electrochimica Acta, 54, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6.

Y. Starchuk, N. Ivanichok, I. Budzulyak, S-V. Sklepova, O. Popovych, P. Kolkovskyi, B. Rachiy, Electrochemical properties of nanoporous carbon material subjected to multiple chemical activation, Fullerenes Nanotubes and Carbon Nanostructures, 30(9), 936 (2022); https://doi.org/10.1080/1536383X.2022.2043285.

W. L. Zhang, J. H. Xu, D. X. Hou, J. Yin, D. B. Liu, Y. P. He, H. B. Lin, Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications, Journal of Colloid and Interface Science, 530, 338 (2018); https://doi.org/10.1016/j.jcis.2018.06.076.

B. K. Ostafiychuk, N. Ya. Ivanichok, S.-V. Sklepova, O. M. Ivanichok, V. O. Kotsyubynsky, P. I. Kolkovskyy, I. M. Budzulyak, R. P. Lisovskiy, Influence of plant biomass activation conditions on the structure and electrochemical properties of nanoporous carbon material, Materials Today: Proceedings, 62, 5712 (2022); https://doi.org/10.1016/j.matpr.2022.01.486.

M. Liu, F. Wei, X. Yang, S. Dong, Y. Li, X. He, Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template, New Carbon Materials, 33, 316 (2018); https://doi.org/10.1016/S1872-5805(18)60342-7.

V. I. Mandzyuk, I. F. Myronyuk, V. M. Sachko, I. M. Mykytyn, Template synthesis of mesoporous carbon materials for electrochemical capacitors, Surface Engineering and Applied Electrochemistry, 56, 93 (2020); https://doi.org/10.3103/S1068375520010123.

N. Ya. Ivanichok, O. M. Ivanichok, B. I. Rachiy, P. I. Kolkovskyi, I. M. Budzulyak, V. O. Kotsyubynsky, V. M. Boychuk, L. Z. Khrushch, Effect of the carbon ization temperature of plant biomass on the structure, surface condition and electrical conductive properties of carbon nanoporous material, Journal of Physical Studies, 25, 3801 (2021); https://doi.org/10.30970/jps.25.3801.

B. Dyatkin, N.C. Osti, A. Gallegos, Y. Zhang, E. Mamontov, P.T. Cummings, J.Wu, Y. Gogotsi, Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors, Electrochimical Acta, 283, 882 (2018); https://doi.org/10.1016/j.electacta.2018.06.200.

S. Brunauer, P. H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60, 309 (1938); https://doi.org/10.1021/JA01269A023.

B. C. Lippens, J. H. de Boer, Studies on pore systems in catalysts: V. The t method, Journal of Catalysis, 4, 319(1965); https://doi.org/10.1016/0021-9517(65)90307-6.

R. Evans, U. Marconi, P. Tarazona, Capillary condensation and adsorption in cylindrical and slit-like pores, Journal of the Chemical Society, Faraday Transactions II, 82, 1763 (1986); https://doi.org/10.1039/F29868201763

O. Terasaki, Electron Microscopy Studies in Molecular Sieve Science, Structures and Structure Determination, 2, 71 (1999); https://doi.org/10.1007/3-540-69749-7.

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, R. Francisco, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117.

S.-V. Sklepova, N. Ivanichok, P. Kolkovskyi, V. Kotsyubynsky, V. Boychuk, B. Rachiy, A. Uhrynski, M. Bembenek, L. Ropyak, Porous Structure and Fractal Dimensions of Activated Carbon Prepared from Waste Coffee Grounds, Materials, 16(18), 6127 (2023); https://doi.org/10.3390/ma16186127.

J. K. McDonough, A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes; Carbon, 50, 3298 (2012); https://doi.org/10.1016/j.carbon.2011.12.022.

S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochimica Acta, 35, 263 (1990); https://doi.org/10.1016/0013-4686(90)85068-X.

P. Kurzweil, The 12-th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Deerfield Beach. Florida (USA), 2004), pp. 18-32.

K. Tоnurist, I. Vaas, T. Thomberg, A. Jänes, H. Kurig, T. Romann, E. Lust, Application of multistep electrospinning method for preparation of electrical double-layer capacitor half-cells, Electrochim. Acta, 119, 72 (2014); https://doi.org/10.1016/j.electacta.2013.11.155.

J. Li, X. D. Zhao, Preparation and Electrochemical Characterization of an Activated Carbon Material of High Surface Area for Supercapacitor, Advanced Materials Research, 463-464, 410 (2012); https://doi.org/10.4028/www.scientific.net/AMR.463-464.410.

Downloads

Published

2024-02-12

How to Cite

Ivanichok, N., Ivanichok, O., Budzulyak, I., Kolkovskyi , P., Rachiy , B., Vyshnevskyi , O., … Soltys, A. (2024). Investigation of the effect of carbonization temperature of plant biomass on the electrochemical properties of carbon material. Physics and Chemistry of Solid State, 25(1), 57–64. https://doi.org/10.15330/pcss.25.1.57-64

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 3 4 > >>