Photoelectric properties of heterojunctions based on semiconducting metal oxides and indium selenide
DOI:
https://doi.org/10.15330/pcss.26.2.231-234Keywords:
indium selenide, heterostructure, photoresponseAbstract
The results of a comparison of the photosensitivity of heterojunctions based on InSe layered semiconductor and various wide band gap oxides (Mn2O3, CuFeO2, Fe2O3) produced by the spray pyrolysis method are given. The photoresponse of the heterojunction irradiated from the side of metal oxides was studied in the photon energy range of 1.2÷3 eV. The possibility of the formation of In2Se3 phase between of InSe and oxides and its effect on the photosensitivity of the heterostructures have been considered.
References
M. Teena, A.G. Kunjomana, K. Ramesh, R. Venkatesh, N. Naresh, Architecture of monophase InSe thin film structures for solar cell applications, Sol. Energy Mater. Sol., 166, 190 (2017); https://doi.org/10.1016/j.solmat.2017.03.027.
J. Martínez-Pastor, A. Segura, J.L. Valdés, A. Chevy, Electrical and photovoltaic properties of indium‐tin‐oxide/p‐InSe/Au solar cells, J. Appl. Phys., 62, 1477 (1987); https://doi.org/10.1063/1.339627.
I.V. Mintyanskii, P.I. Savitskii, Z.D. Kovalyuk, Two-band conduction in electron-irradiated n-InSe single crystals, Phys. St. Sol. (b), 252 (2), 346 (2015); https://doi.org/10.1002/pssb.201451146.
W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, K. Wang, Gate tuning of high-performance InSe-based photodetectors using graphene electrodes, Adv. Opt. Mater., 3(10), 1418 (2015); https://doi.org/10.1002/adom.201500190.
X. Sun, J. He, B. Shi, B. Zhang, R. Wang, Alpha-phase indium selenide saturable absorber for a femtosecond all-solid-state laser, Opt. Lett., 44, 699 (2019); https://doi.org/10.1364/OL.44.000699.
Y. Pan, Q. Zhao, F. Gao, M. Dai, W. Gao, T. Zheng, S. Su, J. Li, H. Chen, Strong in-plane optical and electrical anisotropies of multilayered γ-InSe for high-responsivity polarization-sensitive photodetectors, ACS Appl. Mater. Interfaces, 14(18), 21383 (2022); https://doi.org/10.1021/acsami.2c04204.
I.G. Tkachuk, I.G. Orletskii, V.I. Ivanov, Z.D. Kovalyuk, A.V. Zaslonkin, V.V. Netyaga, Photoelectric properties of the Mn2O3/n-InSe heterojunction, J. Nano- Electron. Phys., 15(2), 02022 (2023); https://doi.org/10.21272/jnep.15(2).02022.
I.G. Orletskii, I.G. Tkachuk, V.I. Ivanov, Z.D. Kovalyuk, A.V. Zaslonkin, Electrical properties and photosensitivity of n-Mn2O3/p-InSe heterojunctions produced by the spray pyrolysis method, J. Nano- Electron. Phys., 15(5), 05025 (2023); https://doi.org/10.21272/jnep.15(5).05004.
I.G. Tkachuk, I.G. Orletskii, V.I. Ivanov, A.V. Zaslonkin, Z.D. Kovalyuk, Photosensitive CuFeO2/n-InSe heterojunctions, J. Nano- Electron. Phys., 14 (4), 04016 (2022); https://doi.org/10.21272/jnep.14(4).04016.
I.G. Orletskii, I.G. Tkachuk, Z.D. Kovalyuk, V.I. Ivanov, A.V. Zaslonkin, Fe2O3/p-InSe heterostructures produced by spray pyrolysis method, J. Nano- Electron. Phys., 16(2), 02007 (2024); https://doi.org/10.21272/jnep.16(2).02007.
O.A. Balitskii, K.V. Lutsiv, V.P. Savchyn, J.M. Stakhira, Thermal oxidation of cleft surface of InSe single crystal, Mater. Sci. Eng., 56(1), 5 (1998); https://doi.org/10.1016/S0921-5107(98)00213-X.
V.P. Savchyn, V.B. Kytsai, Photoelectric properties of heterostructures based on thermo-oxidated GaSe and InSe crystals, Thin Solid Films, 361–362, 123 (2000). https://doi.org/10.1016/S0040-6090(99)00796-8.
J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D'Agosta, A. Castellanos-Gomez, Strong Quantum Confinement Effect in the Optical Properties of Ultrathin α-In2Se3, Adv. Opt. Mat. 4(12), 1939 (2016); https://doi.org/10.1002/adom.201600365.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I.G. Tkachuk, I.G. Orletskii, Z.D. Kovalyuk, V.I. Ivanov, A.V. Zaslonkin, B.V. Kusnir

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




