Thermodynamic study of a synthetic analog of the famatinite mineral - Cu3SbS4
DOI:
https://doi.org/10.15330/pcss.22.1.53-58Keywords:
famatinite mineral, Cu3SbS4, EMF method, Cu4RbCl3I2 solid electrolyte, thermodynamic functionsAbstract
Fundamental thermodynamic properties of the synthetic analog of the famatinite mineral - Cu3SbS4 were studied on the basis of electromotive force (EMF) measurements. The EMF of the concentration chains relative to the Cu electrode with a solid electrolyte was measured for the alloys from the Cu3SbS4 + Sb2S3 + S phase region at 300-380K temperature interval. Based on measurement data, the relative partial thermodynamic functions of copper in alloys, the standard thermodynamic functions of formation, as well as, the standard entropy of the Cu3SbS4 ternary compound were calculated for the first time.
References
E. Peccerillo, K. Durose, MRS Energy & Sustainability, 5(13), 1-59 (2018) (https://doi.org/10.1557/mre.2018.10).
B. Krishnan, S. Shaji, R. Ernesto Ornelas, J. Mater. Sci.: Mater. Electron., 26(7), 4770–4781 (2015) (https://doi.org/10.1007/s10854-015-3092-2).
F.E. Loranca-Ramos, C.J. Diliegros-Godines, R. Silva González, M. Pal, Appl. Surf. Sci., 427, 1099–1106 (2018) (https://doi.org/10.1016/j.apsusc.2017.08.027).
R. Chetty, A. Bali, R.C. Mallik, J. Mater. Chem. C., 3, 12364-12378 (2015) (https://doi.org/10.1039/C5TC02537K).
X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher, Adv. Energy Mater., 3(3), 342-348 (2013) (https://doi.org/10.1002/aenm.201200650).
M.H.K. Rabinal, R. Mulla, Energy Technology, 7(7), 1800850 (2018) (https://doi.org/10.1002/ente.201800850).
Mindat.org: Open database of minerals, rocks, meteorites, and the localities they come from. Available at http://www.mindat.org (accessed August 23, 2018).
B.J. Skinner, F.D. Luce, E. Makovicky, Econ. Geol., 67(7), 924-938 (1972) (http://dx.doi.org/10.2113/gsecongeo.67.7.924).
U. Chalapathi, B. Poornaprakash, S.-H. Park, Ceramics International, 43(6), 5229–5235 (2017) (https://doi.org/10.1016/j.ceramint.2017.01.048).
J. Li, X. Han, J. Li, Y. Zhao, C. Fan, Phys. Status Solidi B, 254(5), 1600608 (2016) (https://doi.org/10.1002/pssb.201600608).
G.-E. Lee, J.-H. Pi, I.-H. Kim, J. Electron. Mater., 49(5), 2781-2788 (2019) (https://doi.org/10.1007/s11664-019-07765-8).
Q. Wang, J. Li, J. Li, Phys. Chem. Chem. Phys., 20(3), 1460–1475 (2018) (https://doi.org/10.1039/C7CP06465A).
K. Aup-Ngoen, T. Thongtem, S. Thongtem, Mater. Lett., 66(1), 182–186 (2012) (http://dx.doi.org/10.1016/j.matlet.2011.08.035).
C. An, Y. Jin, K. Tang, Y. Qian, J. Mater. Chem., 13(2), 301–303 (2003) (https://doi.org/10.1039/B210703A).
J. van Embden, Y. Tachibana, J. Mater. Chem., 22(23), 11466–11469 (2012) (https://doi.org/10.1039/C2JM32094K).
J. van Embden, K. Latham, N.W. Duffy, Y. Tachibana, J. Am. Chem. Soc., 135(31), 11562–11571(2013) (https://doi.org/10.1021/ja402702x).
P.A. Fernandes, A. Shongalova, A.F. da Cunha, J.P. Teixeira, J.P. Leitão, J.M.V. Cunha, S. Bose, P.M.P. Salome, M.R. Correia, J. Alloys Compd., 797, 1359-1366 (2019) (https://doi.org/10.1016/j.jallcom.2019.05.149).
A. Azizur Rahman, E. Hossian, H. Vaishnav, J.B. Parmar, A. Bhattacharya, A. Sarma, Mater. Adv., 1(9), 3333-3338 (2020) (https://doi.org/10.1039/D0MA00574F).
R. DeHoff, Thermodynamics in Materials Science, 2nd ed. (CRC Press, 2006)
M.B. Babanly, E.V. Chulkov, Z.S. Aliev, A.V. Shevelkov, I.R. Amiraslanov, Russ. J. Inorg. Chem., 62(13), 1703–1729 (2017) (https://doi.org/10.1134/S0036023617130034).
M.B. Babanly, L.F. Mashadiyeva, D.M. Babanly, S.Z. Imamaliyeva, D.B. Tagiev, Yu.A. Yusibov, Russ. J. Inorg.Chem, 64(13), 1649-1671 (2019) (https://doi.org/10.1134/S0036023619130035).
A.G. Morachevsky, G.F. Voronin, V.A. Geyderich, I.B. Kutsenok, Electrochemical methods of investigation in thermodynamics of metal systems. (Akademkniga Publ, Moscow, 2003).
M.B. Babanly, Yu.A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic Systems. (Elm, Baku, 2011).
M.B. Babanly, Y.A. Yusibov, N.B. Babanly, Electromotive force and measurement in several systems, Ed. by S. Kara, (Intech, 2011).
N.B. Babanly, E.N.Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, J. Chem. Thermodynamics, 128, 78-86 (2019) (https://doi.org/10.1016/j.jct.2018.08.012).
E.G. Osadchii, Y.I. Korepanov, N.N. Zhdanov, Instrum. Exp. Tech., 59(2), 302–304 (2016) (https://doi.org/10.1134/S0020441216010255).
Z.S. Aliev, S.S. Musayeva, S.Z. Imamaliyeva, M.B. Babanly, J. Therm. Anal. Calorim., 133(2), 1115-1120 (2018) (https://doi.org/10.1007/s10973-017-6812-4).
S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Tagiyev, M.B. Babanly, Thermochimica Acta, 679, 178319 (2019) (https://doi.org/10.1016/j.tca.2019.178319).
I.J. Alverdiyev, Z.S. Aliev, S.M. Bagheri, L.F. Mashadiyeva, Y.A. Yusibov, M.B. Babanly, J. Alloys Compd., 691, 255-262 (2017) (http://dx.doi.org/10.1016/j.jallcom.2016.08.251).
L.F. Mashadieva, Z.T. Gasanova, Yu.A. Yusibov, M.B. Babanly, Inorg. Mater., 54(1), 8–16 (2018) (https://doi.org/10.1134/S0020168518010090).
I.J. Alverdiyev, V.A. Abbasova, Y.A. Yusibov, D.B. Tagiyev, M.B. Babanly, Russ. J. Electrochem., 54(2), 153 (2018).
A. Mookherjee, B. Mishra, Mineral. Deposita, 19(2), 112-117 (1984) (https://doi.org/10.1007/BF00204669).
M.B. Babanly, Yu.A. Yusibov, V.T. Abishev, Ternary chalcogenides on the base of copper and silver (In Russian). (BGU, Baku, 1993).
J.Emsley, The elements, 3rd edition (Oxford University Press, Clarendon, 1998).
I. Barin, Thermochemical Data of Pure Substances, 3rd edition (Wiley-VCH, 2008).
G.K. Johnson, G.N. Papatheodorou, C.E. Johnson, J. Chem. Thermodyn., 13(8), 745-754 (1981) (https://doi.org/10.1016/0021-9614(81)90063-X).
V.S. Iorish and V.S. Yungman. (Eds.) Thermal constants of substances: Database. Version 2, 2006. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html